To the content
3 . 2019

Main effects caused by SGLT2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them

Abstract

Today sodium-glucose cotransporter 2 inhibitors (SGLT2) are one of the most promising and modern classes of glucose-lowering drugs. Possessing a unique mechanism of action, at the kidney inducing chronic glycosuria level, SGLT2 inhibitors provide many clinical benefits, including a decrease in HbA1c levels, body weight and blood pressure, and uric acid. But these drugs attracted special attention when they demonstrated a decrease in cardiovascular and renal events in patients with type 2 diabetes. Due to these effects not been associated with glycemic control, the expert community continues to determine the causes and mechanisms of such an effect on cardiovascular risk. This review assesses the main results of three clinical studies on the cardiovascular safety of empagliflozin, canagliflozin and dapagliflozin, respectively - EMPA-REG OUTCOME, CANVAS, DECLARE-TIMI 58. The studies above, as well as experimental work, allowed us to expand our understanding of the key mechanisms of drugs in the SGLT2 inhibitors class. The main mechanisms should be recognized as glycosuria, natriuresis and osmotic diuresis, weight loss due to visceral fat, ketogenesis on the background of hyperglycemia a decrease in the level of intracellular calcium, modulation of sympathetic tone, which are discussed in detail in this review.

Keywords:type 2 diabetes, inhibitors of sodium glucose cotransporter type 2, cardiovascular safety, cardiovascular failure, EMPA-REG OUTCOME, CANVAS, DECLARE-TIMI 58

For citation: Salukhov V.V., Kotova M.E. Main effects caused by SGLT2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2019; 8 (3): 61-74. doi: 10.24411/2304-9529-2019-13007 (in Russian)

References

1. Cubbon R.M. , Adams B., Rajwani A., Mercer B.N. et al. Diabetes mellitus is associated with adverse prognosis in chronic heart failure of ischaemic and non-ischaemic aetiology // Diabetes Vasc. Dis. Res. 2013. Vol. 10. P. 330-336. doi: 10.1177/1479164112471064

2 . Gaede P., Oe llgaard J., Carstensen B. et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno2 randomised trial // Diabetologia. 2016. Vol. 59. P. 2298-2307.

3. Шаронова Л.А., Вербовой А.Ф. Место глифлозинов в управлении сахарным диабетом 2 типа // Фарматека. 2019. Т. 26. № 4. С. 105-110. https: //dx.doi.org/10.18565/pharmateca. 2019.4.105-11

4. Zinman B., Wanner C., Lachin J.M., Fitchett D. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes // N. Engl. J. Med. 2015. Vol. 373. P. 2117-2128.

5. Neal B., Perkovic V., Mahaffey K.W. et al. Canaglifl ozin and cardiovascular and renal events in type 2 di abetes // N. Engl. J. Med. 2017. Vol. 377. P. 644-657.

6. Wiviott S.D., Raz I., Bonaca M.P. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes // N. Engl. J. Med. 2019. Vol. 380. P. 347-357.

7. Wright E.M., Hirayama B.A., Loo D.F. Active sugar transport in health and disease // J. Intern. Med. 2007 . Vol. 261. P. 32-43.

8. Zelniker T.A., Wiviott S.D., Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review a nd meta-analysis of cardiovascular outcome trials // Lancet. 2019. Vol. 393. P. 31-39.

9. Cherney D.Z., Perkins B.A., Soleymanlou N. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus // Circulation. 2014. Vol. 129. P. 587-597.

10. Cannon C.P., McGuire D., Pratley R. et al. Design and baseline characteristics of the evaluation of ertugliflozin efficacy and safety cardiovascular outcomes trial (VERTIS-CV) // Am. Heart J. 2018. Vol. 206. P. 11-23.

11. Wo o V., Connelly K., Lin P., McFarlane P. The role of sodium glucose cotransporter-2 (SGLT-2) inhibitors in heart failure and chronic kidney disease in type 2 diabetes // Curr. Med. Res. Opin. 2019. Vol. 37, N 7. doi: 10.1080/03007995.2019.1576479

12. Ferrannini E. Sodium-glucose cotransporters and their inhibition: clinical physiology // Cell. Metab. 2017. Vol. 26. P. 27-38.kidney disease in type 2 diabetes. Curr Med Res Opin. 2019; 37 (7). doi: 10.1080/03007995.2019.1576479

12. Ferrannini E. Sodium-glucose cotransporters and their inhibition: clinical physiology. Cell Metab. 2017; 26: 27-38.

13. Wright E.M., Loo D.D., Hirayama B.A. Biology of human sodium glucose transporters. Physiol Rev. 2011; 91: 733-94.

14. Beitelshees A.L., Leslie B.R., Taylor S.I. Sodium-glucose cotransporter 2 inhibitors: a case study in translational research. Diabetes. 2019; 68: 1109-20.

15. Inzucchi S.E., Zinman B., Fitchett D., et al. How does empagliflozin reduce cardiovascularmortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018; 41: 356-63.

16. Shestakova M.V., Boytsov S.A., Drapkina O.M., Demidova T.Yu., et al. The interim experts’ council resolution on the EMPA-REG OUTCOME TRIAL issues. Ratsionalnaya farmakoterapiya v kardiologii [Rational Pharmacotherapy in Cardiology]. 2016; 12 (2):186-90. (in Russian)

17. Verma S., McMurray J.J.V. SGLT2 Inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018; 61 (10): 2108-17.

18. Hallow K.M., Helmlinger G., Greasley P.J., McMurray J.J.V. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018; 20: 479-87.

19. Wilcox C.S., Shen W., Boulton D.W., Leslie B.R., Griffen S.C. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc. 2018; 7: e007046.

20. Salukhov V.V., Demidova T.Yu. Empagliflozin as a new management strategy on outcomes in patients with type 2 diabetes mellitus. Sakharni Diabet [Diabetes Mellitus]. 2016; 19 (6): 494-510. (in Russian)

21. Chino Y., Samukawa Y., Sakai S., et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014; 35: 391-404.

22. Blau J.E., Bauman V., Conway E.M., et al. Canagliflozin triggers the FGF23/1.25- dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight. 2018; 3: e99123.

23. Tang H., Zhang X., Zhang J., et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a metaanalysis of randomised controlled trials. Diabetologia. 2016; 59: 2546-51.

24. Weir M.R., Kline I., Xie J., Edwards R., Usiskin K. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin. 2014; 30: 1759-68.

25. Babak A.V., Khalimov Yu.Sh., Shevchenko N.V. Dynamics of daily excretion of electrolytes and some cardiovascular parameters in patients with type 2 diabetes mellitus and hypertension after a single dose of em-pagliflozin. In: Collection of abstracts VIII (XXV) All-Russian Diabetological Congress with international participation. Moscow: National Medical Research Center of Endocrinology; Russian Association of Endocrinologists. 2018: 176-7. (in Russian)

26. Bailey C.J., Gross J.L., Pieters A., Bastien A., List J.F Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010; 375: 2223-33.

27. Lavalle-Gonzal ez F.J., Januszewicz A., Davidson J., et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013; 56; 2582-92.

28. Sha S., Polidori D., Farrell K., et al. Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, doubleblind, crossover study. Diabetes Obes Metab. 2015; 17: 188-97.

29. Ferrannini E., Muscelli E., Frascerra S., et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014; 124: 499-508.

30. Bonner C., Kerr-Conte J., Gmyr V., et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015; 21: 512-7.

31. Ferrannini G., Hach T., Crowe S., Sanghvi A., et al. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015; 38: 1730-5.

32. Ametov A.S., Pashkova E.Yu., Sharafetdinov A.S., Zhigareva A.V. The role and place of sodium-glucose cotransporter-2 inhibitors in multifactorial management of type 2 diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2019; 8 (1): 8-16. (in Russian) doi: 10.24411/2304-9529-2019-11001

33. Mudaliar S., Polidori D., Zambrowicz B., Henry R.R. Sodium-glucose cotransporter inhibitors: effects on renal and intestinal glucose transport: from bench to bedside. Diabetes Care. 2015; 38: 2344-53.

34. Ferrannini E., Baldi S., Frascerra S., et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016; 65: 1190-5.

35. Cotter D.G., Schugar R.C., Crawford P.A. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013; 304: H1060-76.

36. Gormsen L.C., Svart M., Thomsen H.H., et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. 2017; 6: e005066. doi: 10.1161/JAHA.116.005066

37. Lauritsen K.M., Sondergaard E., Svart M., et al. Ketone body infusion increases circulating erythropoietin and bone marrow glucose uptake. Diabetes Care. 2018; 41 (12): e152-4. https://doi.org/10.2337/dc18-1421

38. Rajasekeran H., Lytvyn Y., Cherney D.Z. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int. 2016; 89: 524-6.

39. Tikkanen I., Narko K., Zeller C., Green A., et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2014; 38: 420-8.

40. Cherney D.Z.I., Perkins B.A., Soleymanlou N., Maione M., et al. The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation. 2014; 129: 587-97.

41. Despa S. Myocyte [Na+]I dysregulation in heart failure and diabetic cardiomyopathy. Front Physiol. 2018; 9: 1303. doi: 10.3389/ fphys.2018.01303

42. Murphy E., Eisner D.A. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res. 2009; 104: 292-303. doi: 10.1161/ CIRCRESAHA.108.189050

43. Merovci A., Mari A., Solis-Herrera C., et al. Dapagliflozin lowers plasma glucose concentration and improves b-cell function. J Clin Endocrinol Metab. 2015; 100: 1927-32.

44. Cordero M.D., Williams M.R., Ryffel B. AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging. Trends Endocrinol Metab. 2018; 29: 8-17. doi: 10.1016/j.tem.2017.10.009

45. Mdnzel T., Gori T., Keaney J.F., Maack C., Daiber A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur Heart J. 2015; 36: 2555-64. doi: 10.1093/ eurheartj/ehv305

46. Frati G., Schirone L., Chimenti I., Yee D., et al. An overview of the inflammatory signalling mechanisms in themyocardiumunderlying the development of diabetic cardiomyopathy. Cardiovasc Res. 2017; 113: 378-88. doi: 10.1093/cvr/cvx011

47. Hamouda N.N., Sydorenko V., Qureshi M.A., Alkaabi J.M., et al. Dapagliflozin reduces the amplitude of shortening and Ca2+ transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem. 2014; 400: 57-68. doi: 10.1007/s11010-014-2262-5

48. Baartscheer A., Schumacher C.A., Belterman C.N.W., Coronel R., et al. [Na+ ]i and the driving force of the Na+/Ca2+-exchanger in heart. Cardiovasc Res. 2003; 57: 986-95. doi: 10.1016/S0008-6363(02)00848-9

49. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018; 71: 471-6. https:// doi.org/10.1016/j.jjcc.2017.12.004

50. Hijmering M.L., Stroes E.S., Olijhoek J., Hutten B.A., et al. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol. 2002; 39: 683-8.

51. Rahman A., Fujisawa Y., Nakano D., Hitomi H., Nishiyama A. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin Exp Pharmacol Physiol. 2017; 44: 522-5.

52. Hillis G.S., Hata J., Woodward M., Perkovic V., et al. Resting heart rate and the risk of microvascular complications in patients with type 2 diabetes mellitus. J Am Heart Assoc. 2012; 1: e002832.

53. Sano M. Hemodynamic effects of sodium-glucose cotransporter 2 inhibitors. J Clin Med Res. 2017; 9: 457-60.

54. Sano M., Chen S., Imazeki H., Ochiai H., Seino Y. Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo controlled, double-blind clinical trials. J Diabetes Investig. 2018; 9 (3): 638-41. doi: 10.1111/jdi.12726

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»