To the content
1 . 2021

Risk factors for thyroid oncogenesis. Contribution of genetic mutations, oncogenes, diselementosis and growth factors to the formation of follicular neoplasms of the thyroid gland in persons with visceral obesity

Abstract

The problem of the growth of benign and malignant tumors of the thyroid gland (TG) in recent years has become especially acute. In the structure of all neoplasms of the endocrine system, they account for 90%. Due to the availability of ultrasound examination, nodular formations and tumors are often diagnosed, however, the question of their primary prevention remains open. Perhaps this is due to the lack information on the pathogenesis of thyroid cancer. This review article provides information on the influence of genetic mutations, oncogenes, disorders of trace element composition, obesity, insulin resistance, IGF-1 and other growth factors on the morphology and function of the TG, as well as on the formation of benign and malignant neoplasms of the thyroid gland.

Keywords:thyroid gland, tumor, oncogenesis, trace element, insulin, obesity, growth factors

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Kvitkova L.V., Khalimova A.S. Risk factors for thyroid oncogenesis. Contribution of genetic mutations, oncogenes, diselementosis and growth factors to the formation of follicular neoplasms of the thyroid gland in persons with visceral obesity. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2021; 10 (1): 41-51. DOI: https://doi.org/10.33029/2304-9529-2021-10-1-41-51 (in Russian)

References

1. Tirro E., Martorana F., Romano S., et al. Molecular alterations in thyroid cancer: from bench to clinical practice. Genes (Basel). 2019; 10 (9): 709. DOI: https://doi.org/10.3390/genes10090709.

2. La Vecchia C., Malvezzi M., Bosetti C., et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015; 136 (9): 2187-95. DOI: https://doi.org/10.1002/ijc.29251

3. Norris J.J., Farci F. Follicular Adenoma // StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing, 2020 Jan.

4. Zyablov E.V., Chesnokova N.P., Barsukov V. Yu. Thyroid cancer: modern concepts of etiology and pathogenesis. Nauchnoe obozrenie [Scientific Review]. 2016; (3): 37-61. (in Russian)

5. Sarantseva K.A., Laktionova L.V., Reutova E.V., et al. Immunology: the formation of the immune response as a leading factor of antitumor defense. Zlokachestvennye opukholi [Malignant Tumours]. 2016; 2 (5): 5-14. (in Russian)

6. Kratky J., Vitkova H., Bartakova J., et al. Thyroid nodules: pathophysiological insight on oncogenesis and novel diagnostic techniques. Physiol Res. 2014; 63 (suppl 2): 263-75.

7. Sazonov M.E., Shtandel’ S.A., Karachentsev Yu.I., et al. Molecular genetic markers of the development of follicular thyroid cancer. Problemy endokrinnoy patologii [Problems of Endocrine Pathology]. 2018; (2): 25-30. (in Russian)

8. Bershteyn L.M. Thyroid cancer: epidemiology, endocrinology, factors and mechanisms of carcinogenesis. Prakticheskaya onkologiya [Practical Oncology]. 2007; 8 (1): 1-8. (in Russian)

9. Zhang L., Lian R., Zhao J., Feng X., et al. IGFBP7 inhibits cell proliferation by suppressing AKT activity and cell cycle progression in thyroid carcinoma. Cell Biosci. 2019; 9: 44. DOI: https://doi.org/10.1186/s13578-019-0310-2

10. Derwahl M., Nicula D. Estrogen and its role in thyroid cancer. Endocr Relat Cancer. 2014; 21 (5): 273-83. DOI: https://doi.org/10.1530/ERC-14-0053

11. Tafani M., De Santis E., Coppola L., et al. Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression. Biomed Pharmacother. 2014; 68 (1): 1-5. DOI: https://doi.org/10.1016/j.bi-opha.2013.10.013

12. Vanushko V.E., Fadeev V.V. Nodular goiter (clinical lecture). En-dokrinnaya khirurgiya [Endocrine Surgery]. 2012; (4): 11-6. (in Russian)

13. Nava-Villalba M., Nunez-Anita R.E., Bontempo A., Aceves C. Activation of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone. Mol Cancer. 2015; 14: 168. DOI: https://doi.org/10.1186/s12943-015-0436-8.

14. Avery J.C., Hoffmann P.R. Selenium, selenoproteins, and immunity. Nutrients. 2018; 10 (9): 1203. DOI: https://doi.org/10.3390/nu10091203

15. Kamilova N.M., Sadykhov N.M., Aliev Ch.S. Diagnostic and prognostic value of studying the effect of zinc, copper and selenium on human health. Biomeditsina [Biomedicine]. 2016; (4): 71-7. (in Russian)

16. Brady D.C., Crowe M.S., Turski M.L., et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014; 509 (7501): 492-6. DOI: https://doi.org/10.1038/nature13180

17. Sviridova S.P., Kashiya Sh.R., Obukhova O.A., et al. Possibilities of essential selenium in oncology. Vestnik RONTs imeni N.N. Blokhina RAMN [Bulletin of the N.N. Blokhin National Medical Research Center of Oncology RAMS]. 2012; 23 (3): 6-14. (in Russian).

18. Garufi A., D’Orazi V., Crispini A., et al. Zn(II)-curc targets p53 in thyroid cancer cells. Int J Oncol. 2015; 47 (4): 1241-8. DOI: https://doi.org/10.3892/ijo.2015.3125

19. Stojsavljevic A., Rovcanin B., Jagodic J., et al. Alteration of trace elements in multinodular goiter, thyroid adenoma, and thyroid cancer. Biol Trace Elem Res. 2021 Jan 6. DOI: https://doi.org/10.1007/s12011-020-02542-9

20. Kosova F., Tsetin B., Akinchi M. Serum copper content in benign and malignant thyroid diseases. Bratislavskiy meditsinskiy zhurnal [Bratislava Medical Journal]. 2012; 113 (12): 718-20. (in Russian)

21. Novikova I.A. Iron and the immune response (lecture). Problemy zdorov’ya i ekologii [Problems of Health and Ecology]. 2011; 30 (4): 42-8. (in Russian)

22. Heidarpour M., Rezvanian H., Kachuei A. Acromegaly and papillary thyroid carcinoma: a case series. J Res Med Sci. 2019; 24: 81. DOI: https://doi.org/10.4103/jrms.JRMS_969_18

23. Malaguarnera R., Morcavallo A., Belfiore A. The insulin and IGF-I pathway in endocrine glands carcinogenesis. J Oncol. 2012; 2012: 635614. DOI: https://doi.org/10.1155/2012/635614

24. Sundaram S., Johnson A.R., Makowski L. Obesity, metabolism and the microenvironment: links to cancer. J Carcinog. 2013; 12: 19. DOI: https://doi.org/10.4103/1477-3163.119606

25. Zhang X., Sheng X., Miao T., et al. Effect of insulin on thyroid cell proliferation, tumor cell migration, and potentially related mechanisms. Endocr Res. 2019; 44 (1-2): 55-70. DOI: https://doi.org/10.1080/07435800.2018.1522641

26. Mikhalenko E.P., Shchayuk A.N., Kil’chevsky A.V. Signaling pathways: the mechanism of regulation of proliferation and survival of tumor cells (review article). Molekulyarnaya i prikladnaya genetika [Molecular and Applied Genetics]. 2019; (26): 145-57. (in Russian)

27. Osher E., Macaulay V.M. Therapeutic targeting of the IGF axis. Cells. 2019; 8 (8): E 895. DOI: https://doi.org/10.3390/cells8080895

28. Heidarpour M., Rezvanian H., Kachuei A. Acromegaly and papillary thyroid carcinoma: a case series. J Res Med Sci. 2019; 24: 81. DOI: https://doi.org/10.4103/jrms.JRMS_969_18

29. Malaguarnera R., Frasca F., Garozzo A., et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab. 2011; 96 (3): 766-74. DOI: https://doi.org/10.1210/jc.2010-1255

30. Altas A., Kuzu F., Arpaci D., et al. The clinical values of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels in blood and thyroid nodules. Int J Endocrinol. 2017; 2017: 3145234. DOI: https://doi.org/10.1155/2017/3145234

31. Mohamad Pakarul Razy N.H., Wan Abdul Rahman W.F., Win T.T. Expression of vascular endothelial growth factor and its receptors in thyroid nodular hyperplasia and papillary thyroid carcinoma: a Tertiary Health Care Centre Based Study. Asian Pac J Cancer Prev. 2019; 20 (1): 277-82. DOI: https://doi.org/10.31557/APJCP.2019.20.1.277

32. Keefe S.M., Cohen M.A., Brose M.S. Targeting vascular endothelial growth factor receptor in thyroid cancer: the intracellular and extracellular implications. Clin Cancer Res. 2010; 16 (3): 778-83. DOI: https://doi.org/10.1158/1078-0432.CCR-08-2743

33. Haytaoglu G., Kuzu F., Arpaci D., et al. Correlation of vascular endothelial growth factor and vascular endothelial growth factor receptor-1 levels in serum and thyroid nodules with histopathological and radiological variables. J Lab Physicians. 2019; 11 (1): 51-7. DOI: https://doi.org/10.4103/JLP.JLP_41_18

34. Sprindzuk M.V. Angiogenesis in malignant thyroid tumors. World J Oncol. 2010; 1 (6): 221-31. DOI: https://doi.org/10.4021/wjon263e

35. Vela-Gaxha Z., Shahini L., Manxhuka-Kerliu S. The prognostic role of vascular endothelial growth factor-a expression in thyroid carcinomas. Folia Med (Plovdiv). 2019; 61 (1): 61-8. DOI: https://doi.org/10.2478/folmed-2018-0059

36. Itoh A., Iwase K., Jimbo S., et al. Expression of vascular endothelial growth factor and presence of angiovascular cells in tissues from different thyroid disorders. World J Surg. 2010; 34 (2): 242-8. DOI: https://doi.org/10.1007/s00268-009-0344-4

37. Rajabi S., Dehghan M.H., Dastmalchi R. The roles and role-players in thyroid cancer angiogenesis. Endocr J. 2019; 66 (4): 277-93. DOI: https://doi.org/10.1507/endocrj.EJ18-0537

38. Jo Y.S., Li S., Song J.H., et al. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. Clin Endocrinol Metab. 2006; 91 (9): 3667-70. DOI: https://doi.org/10.1210/jc.2005-2836

39. Husain A., Hu N., Sadow P.M., et al. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E). Cancer Lett. 2016; 380 (2): 577-85. DOI: https://doi.org/10.1016/j.canlet.2015.07.012

40. Kang Y.E., Kim J.T., Lim M.A., et al. Association between circulating fibroblast growth factor 21 and aggressiveness in thyroid cancer. Cancers (Basel). 2019; 11 (8): 1154. DOI: https://doi.org/10.3390/can-cers11081154

41. Redler A., Di Rocco G., Giannotti D., et al. Fibroblast growth factor receptor-2 expression in thyroid tumor progression: potential diagnostic application. PLoS One. 2013; 8 (8): e72224. DOI: https://doi.org/10.1371/journal.pone.0072224

42. Kawarada Y., Inoue Y., Kawasaki F., et al. TGF-p induces p53/Smads complex formation in the PAI-1 promoter to activate transcription. Sci Rep. 2016; 6: 35483. DOI: https://doi.org/10.1038/srep35483

43. Moskalev A.V., Rudoi A.S., Apchel A.V., et al. Features of the biology of transforming growth factor p and immunopathology. Vestnik Rossiyskoy voenno-meditsinskoy akademii [Bulletin of the Russian Military Medical Academy]. 2016; 2 (54): 206-16. (in Russian)

44. Pisarev M.A., Thomasz L., Juvenal G.J. Role of transforming growth factor beta in the regulation of thyroid function and growth. Thyroid. 2009; 19 (8): 881-92. DOI: https://doi.org/10.1089/thy.2007.0303

45. Fuziwara C.S., Saito K.C., Kimura E.T. Interplay of TGFp signaling and microRNA in thyroid cell loss of differentiation and cancer progression. Arch Endocrinol Metab. 2019; 63 (5): 536-44. DOI: https://doi.org/10.20945/2359-3997000000172

46. Kim Y.-S., Kim J.-S., Kim Y.-S. EGFR and HER 2 expression in papillary thyroid carcinoma. J Endocr Surg. 2018; 18 (4): 228-35. DOI. https://doi.org/10.16956/jes.2018.18.4.228

47. Fisher K.E., Jani J.C., Fisher S.B., et al. Epidermal growth factor receptor overexpression is a marker for adverse pathologic features in papillary thyroid carcinoma. J Surg Res. 2013; 185 (1): 217-24. DOI: https://doi.org/10.1016/j.jss.2013.05.003

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»