To the content
1 . 2021

Vascular aging and type 2 diabetes mellitus

Abstract

Cardiovascular diseases remain the leading cause of morbidity and mortality in developed countries, and chronological age, along with others, is the main risk factor for their development. Current strategies for increasing life expectancy and improving health require physicians to understand the inter-individual differences in age-related functional changes known as early vascular aging. The aim of this review article is to summarize the current data on the prognostic role of increased arterial stiffness in the verification of early vascular aging in people with type 2 diabetes-associated cardiovascular diseases and to identify individuals for the earliest prevention of cardiovascular diseases. During the discussion, modern approaches to managing vascular age and correcting risk factors for early vascular aging, such as physical activity, a low-calorie diet, and limiting sodium intake, are considered. Emphasis is placed on the effectiveness of the prevention of vascular aging with various hypoglycemic drugs.

Keywords:vascular aging, type 2 diabetes mellitus, arterial stiffness

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Rubtsov Yu.E., Kryukov E.V., Khalimov Yu.Sh. Vascular aging and type 2 diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2021; 10 (1): 52-61. DOI: https://doi.org/10.33029/2304-9529-2021-10-1-52-61 (in Russian)

References

1. Hamczyk M.R., Nevado R.M., Barettino A., et al. Biological versus chronological aging: JACC Focus Seminar. J Am Coll Cardiol 2020; 75 (8): 919-30.

2. Nilsson P., Olsen M., Laurent S. Early Vascular Aging (EVA) New Directions in Cardiovascular Protection. European Society of Hypertension. 2015: 376 p.

3. Ungvari Z., Tarantini S., Donato A.J., et al. Mechanisms of vascular aging. Circ Res. 2018; 123: 849-67.

4. Patoulias D., Papadopoulos C., Stavropoulos K., et al. Prognostic value of arterial stiffness measurements in cardiovascular disease, diabetes, and its complications: The potential role of sodium-glucose co-transporter-2 inhibitors. J Clin Hypertens. 2020; 22: 562-71.

5. Nowak K., Rossman M., Chonchol M., et al. Strategies for achieving healthy vascular aging. Hypertension. 2018; 71: 389-402.

6. Bouissou C., Lacolley P., Dabire H., et al. Increased stiffness and cell-matrix interactions of abdominal aorta in two experimental nonhypertensive models: long-term chemically sympathectomized and sinoaortic denervated rats. J Hypertens. 2014; 32 (3): 652-8.

7. Nilsson P., Boutouyrie P., Laurent S. Vascular aging a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009; 54: 3-10.

8. Kryukov E.V., Makeeva T.G., Potekhin N.P., Fursov A.N. Prevention of vascular wall remodeling in individuals with prehypertension. Voenno-meditsinskiy zhurnal [Military and Medical Journal]. 2020; 341 (5): 82-5. (in Russian)

9. Kryukov E.V., Potekhin N.P., Fursov A.N., et al. Values of the «intima-media» complex of carotid arteries as a reflection of the evolution of high normal blood pressure. Voenno-meditsinskiy zhurnal [Military and Medical Journal]. 2018; 339 (2): 11-20 (in Russian)

10. Triantafyllidis H., Trivilou P., Ikonomidis I., et al. Is arterial hypertension control enough to improve aortic stiffness in untreated patients with hypertension? A 3-year follow-up study. Angiology. 2015; 66 (10): 904-10.

11. Polivoda S.N., Cherepok A.A., Sychev R.A. Methodological approaches to the examination of patients and clinical interpretation of data in assessing the elastic properties of arterial vessels at the present stage. Ukrainian Journal of Cardiology. 2003; 2: 109-17. (in Ukrainian)

12. Laurent S., Cockroft J., Van Bortel L., et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006; 27: 2588-600.

13. Shirai K., Utino J., Otsuka K., et al. Novel blood pressure-independent arterial wall stiffness parameter: Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb. 2006; 13 (2): 101-7.

14. Vlachopoulos C., Aznaouridis K., Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis. J Am Coll Cardiol. 2010; 55 (13): 1318-27.

15. Ben-Shlomo Y., Spears M., Boustred C., et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014; 63: 636-46.

16. Williams B., Mancia G., Spiering W., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018; 36 (10): 1953-2041.

17. Kimoto E., Shoji T., Shinohara K., et al. Preferential stiffening of central over peripheral arteries in type 2 diabetes. Diabetes. 2003; 52 (2): 448-52.

18. Henry R.M.A., Kostense P.J., Spijkerman A.M.W., et al. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn study. Circulation. 2003; 107 (16): 2089-95.

19. Taniwaki H., Kawagishi T., Emoto M., et al. Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care. 1999; 22 (11): 1851-7.

20. Van Sloten T.T., Henry R.M.A., Dekker J.M., et al. Endothelial dysfunction plays a key role in increasing cardiovascular risk in type 2 diabetes the Hoorn study. Hypertension. 2014; 64 (6): 1299-305.

21. Rahman S., Ismail A.A.S., Ismail S.B., Naing N.N., Rahman A.R.A. Early manifestation of macrovasculopathy in newly diagnosed never treated type II diabetic patients with no traditional CVD risk factors. Diabetes Res Clin Pract. 2008; 80 (2): 253-8.

22. Chang S., Kim J., Sohn T., Son H., Lee J. Effects of glucose control on arterial stiffness in patients with type 2 diabetes mellitus and hypertension: an observational study. J Int Med Res. 2018; 46 (1): 284-92.

23. Agnoletti D., Lieber A., Zhang Y., et al. Central hemodynamic modifications in diabetes mellitus. Atherosclerosis. 2013; 230 (2): 315-21.

24. Agnoletti D., Mansour A.S., Zhang Y., et al. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus. J Hum Hypertens. 2017; 31 (3): 189-94.

25. Mansour A.S., Yannoutsos A., Majahalme N., et al. Aortic stiffness and cardiovascular risk in type 2 diabetes. J Hypertens. 2013; 31 (8): 1584-92.

26. Loehr L.R., Meyer M.L., Poon A.K., et al. Prediabetes and diabetes are associated with arterial stiffness in older adults: the ARIC study. Am J Hypertens. 2016; 29 (9): 1038-45.

27. Teoh W.L., Price J.F., Williamson R.M., et al. Metabolic parameters associated with arterial stiffness in older adults with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. J Hypertens. 2013; 31 (5): 1010-7.

28. Ferreira M.T., Leite N.C., Cardoso C.R.L., Salles G.F. Correlates of aortic stiffness progression in patients with type 2 diabetes: importance of glycemic control - the Rio de Janeiro type 2 diabetes cohort study. Diabetes Care. 2015; 38 (5): 897-904.

29. Rubin J., Nambi V., Chambless L.E., et al. Hyperglycemia and arterial stiffness: the Atherosclerosis Risk in the Communities study. Atherosclerosis. 2012; 225 (1): 246-51.

30. Muhammad I.F., Borne Y., Ostling G., et al. Arterial stiffness and incidence of diabetes: a population-based cohort study. Diabetes Care. 2017; 40 (12): 1739-45.

31. Nowak K.L., Rossman M.J., Chonchol M., Seals D.R. Strategies for achieving healthy vascular aging. Hypertension 2018; 71: 389-402.

32. Kraus W.E., Bhapkar M., Huffman K.M., et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019; 7: 673-83.

33. Aburto N.J, Ziolkovska A., Hooper L., Elliott P., Cappuccio F.P, Meer-pohl J.J., et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013; 346: 1326.

34. Del G.R., Ceresa C., Gabutti S., Troiani C., Gabutti L. Arterial stiffness and central hemodynamics are associated with low diurnal urinary sodium excretion. Diabetes Metab Syndr Obes. 2020; 13: 3289-99.

35. Grillo A., Salvi L., Coruzzi P., Salvi P., Parati G. Sodium intake and hypertension. Nutrients. 2019; 11 (9): 1970.

36. Hasegawa N., Fujie S., Horii N., et al. Effects of different exercise modes on arterial stiffness and nitric oxide synthesis. Med Sci Sports Exerc. 2018; 50 (6): 1177-85.

37. Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013; 47: 393-6.

38. Wright J.T., Williamson J.D., Whelton P.K., et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373: 2103-16.

39. Cosentino F., Grant P.J., Aboyans V., et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41 (2): 255-23.

40. Fleg J.L., Aronow W.S., Frishman W.H. Cardiovascular drug therapy in the elderly: benefits and challenges. Nat Rev Cardiol. 2011; 8: 13-28.

41. Driessen J.H.M., de Vries F., van Onzenoort H.A.W., et al. Metformin use in type 2 diabetic patients is not associated with lower arterial stiffness: the Maastricht Study. J Hypertens. 2019; 37 (2): 365-71.

42. Harashima K., Hayashi J., Miwa T., Tsunoda T. Long-term pioglita-zone therapy improves arterial stiffness in patients with type 2 diabetes mellitus. Metabolism. 2009; 58 (6): 739-45.

43. Koren S., Shemesh-Bar L., Tirosh A., et al. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabetes Technol Ther. 2012; 14 (7): 561-7.

44. Cosenso-Martin L.N., Giollo-Junior L.T., Fernandes L.A.B., et al. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: a randomized controlled trial. Acta Diabetol. 2018; 55 (12): 1237-45.

45. Batzias K., Antonopoulos A.S., Oikonomou E., et al. Effects of newer antidiabetic drugs on endothelial function and arterial stiffness: a systematic review and meta-analysis. J Diabetes Res. 2018; 2018: 1232583.

46. Tuttolomondo A., Cirrincione A., Casuccio A., et al. Efficacy of dula-glutide on vascular health indexes in subjects with type 2 diabetes: a randomized trial. Cardiovasc Diabetol. 2021; 20 (1): 1.

47 Lambadiari V., Pavlidis G., Kousathana F., et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol. 2018; 17 (1): 8.

48. Bosch A., Ott C., Jung S., et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019; 18 (1): 44.

49. lannantuoni F., Maranon A., Diaz-Morales N., et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019; 8 (11): 1814.

50. Shin S.J., Chung S., Kim S.J., et al. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One. 2016; 11 (11): 0165703.

51. Ojima A., Matsui T., Nishino Y., et al. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res. 2015; 47 (9): 686-92.

52. Nedogoda S.V., Barykina I.N., Salasyuk A.S., et al. Effect of different classes of hypoglycemic drugs on vascular elasticity in patients with type 2 diabetes mellitus. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2020; 25 (4): 65-71. (in Russian)

53. Sugiyama S., Jinnouchi H., Kurinami N., et al. The SGLT2 inhibitor dapagliflozin significantly improves the peripheral microvascular endothelial function in patients with uncontrolled type 2 diabetes mellitus. Intern. Med. 2018; 57 (15): 2147-56.

54. Shigiyama F., Kumashiro N., Miyagi M., et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017; 16 (1): 84.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»