To the content
4 . 2021

The role of taurine in mitochondria health: more than just an antioxidant

Abstract

Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.

Keywords:taurine, mitochondria, antioxidant, 5-taurinomethyluridine, oxidative stress, apoptosis

Jong C.J., Sandal P., Schaffer S.W. The role of taurine in mitochondria health: more than just an antioxidant Molecules. 2021; 26 (16): 4913.

DOI: https://doi.org/10.3390/molecules26164913 PMID: 34443494; PMCID: PMC 8400259.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

* Эта статья находится в открытом доступе и распространяется в соответствии с условиями лицензии Creative Commons (CC BY) (https://creativecommons.org/licenses/by/4.0/).

REFERENCES

1. Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1956; 11: 298–300.

2. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972; 20: 145–7.

3. Scheubel R.J., Tostlebe M., Simm A., Rohrbach S., Prondzinsky R., Gellerich F.N., et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol. 2002; 40: 2174–81.

4. Marin-Garcia J., Goldenthal M.J., Moe G.W. Mitochondrial pathology in cardiac failure. Cardiovasc Res. 2001; 49: 17–26.

5. Shapira Y., Cederbaum S.D., Cancilla P.A., Nielsen D., Lippe B.M. Familial poliodystrophy, mitochondrial myopathy, and lactate acidemia. Neurology 1975; 25: 614–21.

6. Hayashi G., Cortopassi G. Oxidative stress in inherited mitochondrial diseases. Free Radic Biol Med. 2015; 88: 10–7.

7. Bournat J.C., Brown C.W. Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes. 2010; 17: 446–52.

8. Prasun P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord. 2020; 19: 2017–22.

9. Zong W.X., Rabinowitz J.D., White E. Mitochondria and cancer. Mol Cell 2016; 61: 667–76.

10. Modica-Napolitano J.S., Singh K.K. Mitochondrial dysfunction in cancer. Mitochondrion 2004; 4: 755-62.

11. Wang W., Zhao F., Ma X., Perry G., Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neuro-degener. 2020; 15: 30.

12. Pallardo F.V., Lloret A., Lebel M., D’Ischia M., Cogger V.C., Le Cou-teur D.G., et al. Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology. 2010; 11: 401-19.

13. Griffiths K.K., Levy R.J. Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid Med Cell Longev. 2017; 2017: 4314025.

14. Haas R.H. Autism and mitochondrial disease. Dev Disabil Res Rev. 2010; 16: 144-53.

15. Negida A., Menshawy A., El Ashal G., Elfouly Y., Hani Y., Hegazy Y., et al. Coenzyme Q10 for patients with Parkinson’s disease: a systematic review and meta-analysis. CNS Neurol Disord Drug Targets 2016; 15: 45-53.

16. Rossman M.J., Santos-Parker J.R., Steward C.A.C., Bispham N.Z., Cuevas L.M., Rosenberg H.L., et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018; 71: 1056-63.

17. Snow B.J., Rolfe F.L., Lockhart M.M., Frampton C.M., O’Sullivan J.D., Fung V., et al.; Protect Study Group. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a diseasemodifying therapy in Parkinson’s disease. Mov Disord. 2010; 25: 1670-4.

18. Sozen E., Demirel T., Ozer N.K. Vitamin E: regulatory role in the cardiovascular system. IUBMB Life 2019; 71: 507-15.

19. Le Bars P.L., Katz M.M., Berman N., Itil T.M., Freedman A.M., Schatz-berg A.F. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA. 1997; 278: 1327-32.

20. Yamaguchi T., Sano K., Takakura K., Saito I., Shinohara Y., Asano T., et al. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke. 1998; 29: 12-7.

21. Tarnopolsky M.A., Roy B.D., MacDonald J.R. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopa-thies. Muscle Nerve. 1997; 20: 1502-9.

22. Hager K., Kenklies M., McAfoose J., Engel J., Munch G. Alpha-lipoic acid as a new treatment option for Alzheimer’s disease — a 48 months follow-up analysis. J Neural Transm Suppl. 2007; 72: 189-93.

23. Chahbouni M., Escames G., Venegas C., Sevilla B., Garcia J.A., Lopez L.C., et al. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duch-enne muscular dystrophy. J Pineal Res. 2010; 48: 282-9.

24. Weishaupt J.H., Bartels C., Polking E., Dietrich J., Rohde G., Po-eggeler B., et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res. 2006; 41: 313-23.

25. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Tanabe Y., et al. L-arginine improves the symptoms of stroke-like episodes in MELAS. Neurology. 2005; 64: 710-2.

26. Koga Y., Ishibashi M., Ueki I., Yatsuga S., Fukiyama R., Akita Y., et al. Effects of L-arginine on the acute phase of strokes in three patients with MELAS. Neurology. 2002; 58: 827-8.

27. Ohsawa Y., Hagiwara H., Nishimatsu S.I., Hirakawa A., Kamimura N., Ohtsubo H., et al. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry. 2019; 90: 529-36.

28. Rikimaru M., Ohsawa Y., Wolf A.M., Nishimaki K., Ichimiya H., Kamimura N., et al. Taurine ameliorates impaired the mitochondrial function and prevents stroke-like episodes in patients with MELAS. Intern Med. 2012; 51: 3351-7.

29. Azuma J., Sawamura A., Awata N., Ohta H., Hamaguchi T., Harada H., et al. Therapeutic effect of taurine in congestive heart failure: a doubleblind crossover trial. Clin Cardiol. 1985; 8: 276-82.

30. Azuma J., Hasegawa H., Sawamura A., Awata N., Ogura K., Harada H., et al. Therapy of congestive heart failure with orally administered taurine. Clin Ther. 1983; 5: 398-408.

31. Beyranvand M.R., Khalafi M.K., Roshan V.D., Choobineh S., Parsa S.A., Piranfar M.A. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol. 2011; 57: 333-7.

32. Jacobsen J.G., Smith L.H. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev. 1968; 48: 424-511.

33. Detmer S.A., Chan D.C. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007; 8: 870-9.

34. Murphy E., Ardehali H., Balaban R.S., DiLisa F., Dorn G.W. 2nd, Kitsis R.N., et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res. 2016; 118: 1960-91.

35. Herst P.M., Rowe M.R., Carson G.M., Berridge M.V. Functional mitochondria in health and disease. Front Endocrinol. 2017; 8: 296.

36. Romero-Garcia S., Prado-Garcia H. Mitochondrial calcium: transport and modulation of cellular processes in homeostasis and cancer (review). Int J Oncol. 2019; 54: 1155-67.

37. Tait S.W., Green D.R. Mitochondria and cell signalling. J Cell Sci. 2012; 125: 807-15.

38. Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015; 13: 89.

39. Alexeyev M.F., Ledoux S.P., Wilson G.L. Mitochondrial DNA and aging. Clin Sci. 2004; 107: 355-64.

40. Xing G., Chen Z., Cao X. Mitochondrial rRNA and tRNA and hearing function. Cell Res. 2007; 17: 227-39.

41. Zhao R.Z., Jiang S., Zhang L., Yu Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med. 2019; 44: 3-15.

42. Turrens J.F. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552: 335-44.

43. Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003; 278: 36 027-31.

44. Hirst J., King M.S., Pryde K.R. The production of reactive oxygen species by complex I. Biochem Soc Trans. 2008; 36: 976-80.

45. Cho Y.M., Kwon S., Pak Y.K., Seol H.W., Choi Y.M., Park D.J., et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2006; 348: 1472-8.

46. Tormos K.V., Anso E., Hamanaka R.B., Eisenbart J., Joseph J., Kalyanaraman B., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011; 14: 537-44.

47. Chen Y., McMillan-Ward E., Kong J., Israels S.J., Gibson S.B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci. 2007; 120: 4155-66.

48. Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007; 26: 1749-60.

49. Nemoto S., Takeda K., Yu Z.X., Ferrans V.J., Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000; 20: 7311-8.

50. Liemburg-Apers D.C., Willems P.H., Koopman W.J., Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol. 2015; 89: 1209-26.

51. West A.P., Shadel G.S., Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011; 11: 389-402.

52. Andreyev A.Y., Kushnareva Y.E., Starkova N.N., Starkov A.A. Metabolic ROS signaling: to immunity and beyond. Biochemistry. 2020; 85: 1650-67.

53. Cui H., Kong Y., Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct. 2012; 2012: 646354.

54. Kowalska M., Piekut T., Prendecki M., Sodel A., Kozubski W., Dorsze-wska J. Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol. 2020; 39: 1410-20.

55. Cai Z., Yan L.J. Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res. 2013; 1: 15-26.

56. Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005; 24: 1311-7.

57. Ramana K.V., Srivastava S., Singhal S.S. Lipid peroxidation products in human health and disease 2019. Oxid Med Cell Longev. 2019; 2019: 7147235.

58. Haines T.H., Dencher N.A. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 2002; 528: 35-9.

59. Houtkooper R.H., Vaz F.M. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008; 65: 2493-506.

60. Osman C., Voelker D.R., Langer T. Making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011; 192: 7-16.

61. Vahaheikkila M., Peltomaa T., Rog T., Vazdar M., Poyry S., Vattu-lainen I. How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem Phys Lipids. 2018; 214: 15-23.

62. Wong-Ekkabut J., Xu Z., Triampo W., Tang I.M., Tieleman D.P., Mon-ticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J. 2007; 93: 4225-36.

63. Oemer G., Koch J., Wohlfarter Y., Alam M.T., Lackner K., Sailer S., et al. Phospholipid acyl chain diversity controls the tissue-specific assembly of mitochondrial cardiolipins. Cell Rep. 2020; 30: 4281-91.e4.

64. Paradies G., Petrosillo G., Pistolese M., Di Venosa N., Federici A., Ruggiero F.M. Decrease in mitochondrial complex I activity in ischemic/rep-erfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004; 94: 53-9.

65. Mileykovskaya E., Dowhan W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids. 2014; 179: 42-8.

66. Paradies G., Petrosillo G., Paradies V., Ruggiero F.M. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 2009; 45: 643-50.

67. Raja V., Greenberg M.L. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype. Chem Phys Lipids. 2014; 179: 49-56.

68. Orrenius S., Zhivotovsky B. Cardiolipin oxidation sets cytochrome c free. Nat Chem Biol. 2005; 1: 188-9.

69. Li X.X., Tsoi B., Li Y.F., Kurihara H., He R.R. Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem. 2015; 63: 301-11.

70. Manoharan S., Kolanjiappan K., Suresh K., Panjamurthy K. Lipid peroxidation & antioxidants status in patients with oral squamous cell carcinoma. Indian J Med Res. 2005; 122: 529-34.

71. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39: 44-84.

72. Lechuga-Sancho A.M., Gallego-Andujar D., Ruiz-Ocana P., Visiedo F.M., Saez-Benito A., Schwarz M., et al. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age. PLoS One. 2018; 13: e0191547.

73. Scudamore O., Ciossek T. Increased oxidative stress exacerbates alpha-synuclein aggregation in vivo. J Neuropathol Exp Neurol. 2018; 77: 443-53.

74. Keller J.N., Schmitt F.A., Scheff S.W., Ding Q., Chen Q., Butterfield D.A., et al. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology. 2005; 64: 1152-6.

75. Narula J., Pandey P., Arbustini E., Haider N., Narula N., Kolodgie F.D., et al. Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA. 1999; 96: 8144-9.

76. Chen L., Gong Q., Stice J.P., Knowlton A.A. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009; 84: 91-9.

77. Hanna M.G., Nelson I.P., Morgan-Hughes J.A., Wood N.W. MELAS: A new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1998; 65: 512-7.

78. Yang Y., Zhang Y., Liu X., Zuo J., Wang K., Liu W., et al. Exogenous taurine attenuates mitochondrial oxidative stress and endoplasmic reticulum stress in rat cardiomyocytes. Acta Biochim Biophys Sin. 2013; 45: 359-67.

79. Takatani T., Takahashi K., Uozumi Y., Shikata E., Yamamoto Y., Ito T., et al. Taurine inhibits apoptosis by preventing formation of the Apaf-1/cas-pase-9 apoptosome. Am J Physiol Cell Physiol. 2004; 287: C 949-53.

80. Niu X., Zheng S., Liu H., Li S. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep. 2018; 18: 4516-22.

81. Zhang R., Wang X., Gao Q., Jiang H., Zhang S., Lu M., et al. Taurine supplementation reverses diabetes-induced podocytes injury via modulation of the CSE/TRPC 6 axis and improvement of mitochondrial function. Nephron. 2020; 144: 84-95.

82. Homma K., Toda E., Osada H., Nagai N., Era T., Tsubota K., et al. Taurine rescues mitochondria-related metabolic impairments in the patient-derived induced pluripotent stem cells and epithelial-mesenchymal transition in the retinal pigment epithelium. Redox Biol. 2021; 41: 101921.

83. Shetewy A., Shimada-Takaura K., Warner D., Jong C.J., Mehdi A.B., Alexeyev M., et al. Mitochondrial defects associated with beta-alanine toxicity: relevance to hyper-beta-alaninemia. Mol Cell Biochem. 2016; 416: 11-22.

84. Jong C.J., Azuma J., Schaffer S. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids. 2012; 42: 2223-32.

85. Ommati M.M., Heidari R., Ghanbarinejad V., Abdoli N., Niknahad H. Taurine treatment provides neuroprotection in a mouse model of manganism. Biol Trace Elem Res. 2019; 190: 384-95.

86. Thirupathi A., Freitas S., Sorato H.R., Pedroso G.S., Effting P.S., Da-miani A.P., et al. Modulatory effects of taurine on metabolic and oxidative stress parameters in a mice model of muscle overuse. Nutrition. 2018; 54: 158-64.

87. Oudit G.Y., Trivieri M.G., Khaper N., Husain T., Wilson G.J., Liu P., et al. Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation. 2004; 109: 1877-85.

88. Wang Q., Fan W., Cai Y., Wu Q., Mo L., Huang Z., et al. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow. Amino Acids. 2016; 48: 2169-77.

89. Jamshidzadeh A., Heidari R., Abasvali M., Zarei M., Ommati M.M., Abdoli N., et al. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother. 2017; 86: 514-20.

90. Huxtable R.J. Physiological actions of taurine. Physiol Rev. 1992; 72: 101-63.

91. Stipanuk M.H. Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res. 2004; 29: 105-10.

92. Heird W.C. Taurine in neonatal nutrition - revisited. Arch Dis Child Fetal Neonatal Ed. 2004; 89: F473-4.

93. Wojcik O.P., Koenig K.L., Zeleniuch-Jacquotte A., Costa M., Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010; 208: 19-25.

94. Yamori Y., Taguchi T., Hamada A., Kunimasa K., Mori H., Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci. 2010; 17 (Suppl 1): S 6.

95. Galeano N.F., Darling P., Lepage G., Leroy C., Collet S., Giguere R., et al. Taurine supplementation of a premature formula improves fat absorption in preterm infants. Pediatr Res. 1987; 22: 67-71.

96. Taurine deficiency in a child on total parenteral nutrition. Nutr Rev. 1985; 43: 81-3.

97. Chesney R.W., Helms R.A., Christensen M., Budreau A.M., Han X., Sturman J.A. The role of taurine in infant nutrition. Adv Exp Med Biol. 1998; 442: 463-76.

98. Lourenco R., Camilo M.E. Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp. 2002; 17: 262-70.

99. Verner A., Craig S., McGuire W. Effect of taurine supplementation on growth and development in preterm or low birth weight infants. Cochrane Database Syst Rev. 2007; 4: CD 006072.

100. Gaull G.E. Taurine in pediatric nutrition: review and update. Pediatrics. 1989; 83: 433-42.

101. Backus R.C., Ko K.S., Fascetti A.J., Kittleson M.D., Macdonald K.A., Maggs D.J., et al. Low plasma taurine concentration in Newfoundland dogs is associated with low plasma methionine and cyst(e)ine concentrations and low taurine synthesis. J Nutr. 2006; 136: 2525-33.

102. Hayes K.C., Trautwein E.A. Taurine deficiency syndrome in cats. Vet Clin N Am. Small Anim Pract. 1989; 19: 403-13.

103. Novotny M.J., Hogan P.M., Flannigan G. Echocardiographic evidence for myocardial failure induced by taurine deficiency in domestic cats. Can J Vet Res. 1994; 58: 6-12.

104. Pion P.D., Kittleson M.D., Skiles M.L., Rogers Q.R., Morris J.G. Dilated cardiomyopathy associated with taurine deficiency in the domestic cat: Relationship to diet and myocardial taurine content. Adv Exp Med Biol. 1992; 315: 63-73.

105. Barnett K.C., Burger I.H. Taurine deficiency retinopathy in the cat. J Small Anim Pract. 1980; 21: 521-34.

106. Leon A., Levick W.R., Sarossy M.G. Lesion topography and new histological features in feline taurine deficiency retinopathy. Exp Eye Res. 1995; 61: 731-41.

107. Madl J.E., McIlnay T.R., Powell C.C., Gionfriddo J.R. Depletion of taurine and glutamate from damaged photoreceptors in the retinas of dogs with primary glaucoma. Am J Vet Res. 2005; 66: 791-9.

108. Fariello R.G., Lloyd K.G., Hornykiewicz O. Cortical and subcortical projected foci in cats: Inhibitory action of taurine. Neurology. 1975; 25: 1077-83.

109. Sturman J.A., Moretz R.C., French J.H., Wisniewski H.M. Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer. J Neurosci Res. 1985; 13: 405-16.

110. Schuller-Levis G., Mehta P.D., Rudelli R., Sturman J. Immunologic consequences of taurine deficiency in cats. J Leukoc Biol. 1990; 47: 32131.

111. Dieter J.A., Stewart D.R., Haggarty M.A., Stabenfeldt G.H., Lasley B.L. Pregnancy failure in cats associated with long-term dietary taurine insufficiency. J Reprod Fertil Suppl. 1993; 47: 457-63.

112. Sturman J.A., Gargano A.D., Messing J.M., Imaki H. Feline maternal taurine deficiency: effect on mother and offspring. J Nutr. 1986; 116: 655-67.

113. Backus R.C., Rogers Q.R., Rosenquist G.L., Calam J., Morris J.G. Diets causing taurine depletion in cats substantially elevate postprandial plasma cholecystokinin concentration. J Nutr. 1995; 125: 2650-7.

114. Rabin B., Nicolosi R.J., Hayes K.C. Dietary influence on bile acid conjugation in the cat. J Nutr. 1976; 106: 1241-6.

115. Backus R.C., Cohen G., Pion P.D., Good K.L., Rogers Q.R., Fascetti A.J. Taurine deficiency in Newfoundlands fed commercially available complete and balanced diets. J Am Vet Med Assoc. 2003; 223: 1130-6.

116. Pion P.D., Kittleson M.D., Thomas W.P., Delellis L.A., Rogers Q.R. Response of cats with dilated cardiomyopathy to taurine supplementation. J Am Vet Med Assoc. 1992; 201: 275-84.

117. van Gelder N.M., Koyama I., Jasper H.H. Taurine treatment of spontaneous chronic epilepsy in a cat. Epilepsia. 1977; 18: 45-54.

118. Berson E.L., Hayes K.C., Rabin A.R., Schmidt S.Y., Watson G. Retinal degeneration in cats fed casein. II. Supplementation with methionine, cysteine, or taurine. Investig Ophthalmol. 1976; 15: 52-8.

119. Sturman J.A.; Messing, J.M. Dietary taurine content and feline reproduction and outcome. J Nutr. 1991; 121: 1195-203.

120. Caine J.J., Geracioti T.D. Taurine, energy drinks, and neuroendocrine effects. Clev Clin J Med. 2016; 83: 895-904.

121. Higgins J.P., Tuttle T.D., Higgins C.L. Energy beverages: content and safety. Mayo Clin Proc. 2010; 85: 1033-41.

122. Kurtz J.A., Van Dusseldorp T.A., Doyle J.A., Otis J.S. Taurine in sports and exercise. J Int Soc Sports Nutr. 2021; 18: 39.

123. Seidel U., Huebbe P., Rimbach G. Taurine: a regulator of cellular redox homeostasis and skeletal muscle function. Mol Nutr Food Res. 2019; 63: e1800569.

124. Ghandforoush-Sattari M., Mashayekhi S., Krishna C.V., Thompson J.P., Routledge P.A. Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids. 2010; 2010: 346237.

125. Sturman J.A., Hepner G.W., Hofmann A.F., Thomas PJ. Metabolism of [35S]taurine in man. J Nutr. 1975; 105: 1206-14.

126. Ito T., Oishi S., Takai M., Kimura Y., Uozumi Y., Fujio Y., et al. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci. 2010; 17 (Suppl 1): S 20.

127. Warskulat U., Flogel U., Jacoby C., Hartwig H.G., Thewissen M., Merx M.W., et al. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 2004; 18: 577-9.

128. Garcia-Ayuso D., Di Pierdomenico J., Valiente-Soriano F.J., Martinez-Vacas A., Agudo-Barriuso M., Vidal-Sanz M., et al. beta-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Exp Eye Res. 2019; 188: 107781.

129. Jong C.J., Ito T., Mozaffari M., Azuma J., Schaffer S. Effect of beta-alanine treatment on mitochondrial taurine level and 5-taurinomethyluri-dine content. J Biomed Sci. 2010; 17 (Suppl 1): S 25.

130. Lake N. Depletion of taurine in the adult rat retina. Neurochem Res. 1982; 7: 1385-90.

131. Pasantes-Morales H., Quesada O., Carabez A., Huxtable R.J. Effects of the taurine transport antagonist, guanidinoethane sulfonate, and beta-alanine on the morphology of rat retina. J Neurosci Res. 1983; 9: 135-43.

132. Han X., Patters A.B., Ito T., Azuma J., Schaffer S.W., Chesney R.W. Knockout of the TauT gene predisposes C 57BL/6 mice to streptozotocin-induced diabetic nephropathy. PLoS One. 2015; 10: e0117718.

133. Rascher K., Servos G., Berthold G., Hartwig H.G., Warskulat U., Heller-Stilb B., et al. Light deprivation slows but does not prevent the loss of photoreceptors in taurine transporter knockout mice. Vision Res. 2004; 44: 2091-100.

134. Warskulat U., Borsch E., Reinehr R., Heller-Stilb B., Monnighoff I., Buchczyk D., et al. Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J. 2006; 20: 574-6.

135. Jong C.J., Ito T., Prentice H., Wu J.Y., Schaffer S.W. Role of mitochondria and endoplasmic reticulum in taurine-deficiency-mediated apoptosis. Nutrients. 2017; 9: 795.

136. Jong C.J., Ito T., Azuma J., Schaffer S. Taurine depletion decreases GRP78 expression and downregulates perk-dependent activation of the unfolded protein response. Adv Exp Med Biol. 2015; 803: 571-9.

137. Jong C.J., Ito T., Schaffer S.W. The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids. 2015; 47: 2609-22.

138. Ito T., Yoshikawa N., Inui T., Miyazaki N., Schaffer S.W., Azuma J. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One. 2014; 9: e107409.

139. Azari J., Bahl J., Huxtable R. Guanidinoethyl sulfonate and other inhibitors of the taurine transporting system in the heart. Proc West Pharmacol Soc. 1979; 22: 389-93.

140. Huxtable R.J., Laird H.E. 2nd, Lippincott S.E. The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethyl sulfonate. J Pharmacol Exp Ther. 1979; 211: 465-71.

141. Pansani M.C., Azevedo P.S., Rafacho B.P., Minicucci M.F., Chiuso-Minicucci F., Zorzella-Pezavento S.G., et al. Atrophic cardiac remodeling induced by taurine deficiency in Wistar rats. PLoS One. 2012; 7: e41439.

142. Parildar H., Dogru-Abbasoglu S., Mehmetcik G., Ozdemirler G., Kocak-Toker N., Uysal M. Lipid peroxidation potential and antioxidants in the heart tissue of beta-alanine- or taurine-treated old rats. J Nutr Sci Vitaminol. 2008; 54: 61-5.

143. Jong C.J., Azuma J., Schaffer S.W. Role of mitochondrial permeability transition in taurine deficiency-induced apoptosis. Exp Clin Cardiol. 2011; 16: 125-8.

144. Schaffer S.W., Ballard-Croft C., Azuma J., Takahashi K., Kakhniashvili D.G., Jenkins T.E. Shape and size changes induced by taurine depletion in neonatal cardiomyocytes. Amino Acids. 1998. 15: 135-42.

145. Suzuki T., Suzuki T., Wada T., Saigo K., Watanabe K. Taurine as a constituent of mitochondrial tRNAs: New insights into the functions of taurine and human mitochondrial diseases. EMBO J. 2002; 21: 6581-9.

146. Wada T., Shimazaki T., Nakagawa S., Otuki T., Kurata S., Suzuki T., et al. Chemical synthesis of novel taurine-containing uridine derivatives. Nucleic Acids Res Suppl. 2002; 2: 11-2.

147. Fakruddin M., Wei F.Y., Suzuki T., Asano K., Kaieda T., Omori A., et al. Defective mitochondrial tRNA taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep. 2018; 22: 482-96.

148. Kirino Y., Goto Y., Campos Y., Arenas J., Suzuki T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA. 2005; 102: 7127-32.

149. Kirino Y., Yasukawa T., Ohta S., Akira S., Ishihara K., Watanabe K., et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA. 2004; 101: 15 070-5.

150. Asano K., Suzuki T., Saito A., Wei F.Y., Ikeuchi Y., Numata T., et al. Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res. 2018; 46: 1565-83.

151. Aruoma O.I., Halliwell B., Hoey B.M., Butler J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J. 1988; 256: 251-5.

152. Li J.X., Pang Y.Z., Tang C.S., Li Z.Q. Protective effect of taurine on hypochlorous acid toxicity to nuclear nucleoside triphosphatase in isolated nuclei from rat liver. World J Gastroenterol. 2004; 10: 694-8.

153. Cheong S.H., Lee D.S. Taurine chloramine prevents neuronal HT22 cell damage through Nrf2-related heme oxygenase-1. Adv Exp Med Biol. 2017; 975 (Pt 1): 145-57.

154. Kang I.S., Kim C. Taurine chloramine administered in vivo increases NRF2-regulated antioxidant enzyme expression in murine peritoneal macrophages. Adv Exp Med Biol. 2013; 775: 259-67.

155. Kim C., Cha Y.N. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids. 2014; 46: 89-100.

156. Higuchi M., Celino F.T., Shimizu-Yamaguchi S., Miura C., Miura T. Taurine plays an important role in the protection of spermatogonia from oxidative stress. Amino Acids. 2012; 43: 2359-69.

157. Okado-Matsumoto A., Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. 2001; 276: 38 388-93.

158. Sturtz L.A., Diekert K., Jensen L.T., Lill R., Culotta V.C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD 1 in guarding against mitochondrial oxidative damage. J Biol Chem. 2001; 276: 38 084-9.

159. Tabassum H., Rehman H., Banerjee B.D., Raisuddin S., Parvez S. Attenuation of tamoxifen-induced hepatotoxicity by taurine in mice. Clin Chim Acta. 2006; 370: 129-36.

160. Pasantes-Morales H., Cruz C. Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res. 1985; 330: 154-7.

161. Pasantes-Morales H., Cruz C. Taurine: a physiological stabilizer of photoreceptor membranes. Prog Clin Biol Res. 1985; 179: 371-81.

162. Pasantes-Morales H., Wright C.E., Gaull G.E. Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol. 1985; 34: 2205-7.

163. Hansen S.H., Andersen M.L., Cornett C., Gradinaru R., Grunnet N. A role for taurine in mitochondrial function. J Biomed Sci. 2010; 17 (Suppl 1): S 23.

164. El Idrissi A. Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids. 2008; 34: 321-8.

165. El Idrissi A., Trenkner E. Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci. 1999; 19: 9459-68.

166. El Idrissi A., Trenkner E. Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol. 2003; 526: 527-36.

167. El Idrissi A., Trenkner E. Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res. 2004; 29: 189-97.

168. Trenkner E., el Idrissi A., Harris C. Balanced interaction of growth factors and taurine regulate energy metabolism, neuronal survival, and function of cultured mouse cerebellar cells under depolarizing conditions. Adv Exp Med Biol. 1996; 403: 507-17.

169. Bkaily G., Jaalouk D., Sader S., Shbaklo H., Pothier P., Jacques D., et al. Taurine indirectly increases [Ca]i by inducing Ca2+ influx through the Na(+)-Ca2+ exchanger. Mol Cell Biochem. 1998; 188: 187-97.

170. Schaffer S., Solodushko V., Azuma J. Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol. 2000; 483: 57-69.

171. Schaffer S.W., Punna S., Duan J., Harada H., Hamaguchi T., Azuma J. Mechanism underlying physiological modulation of myocardial contraction by taurine. Adv Exp Med Biol. 1992; 315: 193-8.

172. Takahashi K., Harada H., Schaffer S.W., Azuma J. Effect of taurine on intracellular calcium dynamics of cultured myocardial cells during the calcium paradox. Adv Exp Med Biol. 1992; 315: 153-61.

173. Steele D.S., Smith G.L., Miller D.J. The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Ca2+ sensitivity of chemically skinned rat heart. J Physiol. 1990; 422: 499-511.

174. Galler S., Hutzler C., Haller T. Effects of taurine on Ca2(+)-de-pendent force development of skinned muscle fibre preparations. J Exp Biol. 1990; 152: 255-64.

175. Griffiths E.J., Rutter G.A. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta. 2009; 1787: 1324-33.

176. Chen M., Guerrero A.D., Huang L., Shabier Z., Pan M., Tan T.H., et al. Caspase-9-induced mitochondrial disruption through cleavage of anti-apoptotic BCL-2 family members. J Biol Chem. 2007; 282: 33 888-95.

177. Leon R., Wu H., Jin Y., Wei J., Buddhala C., Prentice H., et al. Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res. 2009; 87: 1185-94.

178. Menzie J., Prentice H., Wu J.Y. Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci. 2013; 3: 877-907.

179. Wu J.Y., Prentice H. Role of taurine in the central nervous system. J Biomed Sci. 2010; 17 (Suppl 1): S 1.

180. Taranukhin A.G., Taranukhina E.Y., Saransaari P., Podkletnova I.M., Pelto-Huikko M., Oja S.S. Neuroprotection by taurine in ethanol-induced apoptosis in the developing cerebellum. J Biomed Sci. 2010; 17 (Suppl 1). S 12.

181. Azuma J., Sawamura A., Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J. 1992; 56: 95-9.

182. Di Lorenzo A., lannuzzo G., Parlato A., Cuomo G., Testa C., Coppola M., et al. Clinical evidence for Q10 coenzyme supplementation in heart failure: from energetics to functional improvement. J Clin Med. 2020; 9: 1266.

183. Jafari M., Mousavi S.M., Asgharzadeh A., Yazdani N. Coenzyme Q10 in the treatment of heart failure: a systematic review of systematic reviews. Indian Heart J. 2018; 70 (Suppl 1): S 111-7.

184. Sharma A., Fonarow G.C., Butler J., Ezekowitz J.A., Felker G.M. Coenzyme Q10 and heart failure: a state-of-the-art review. Circ Heart Fail. 2016; 9: e002639.

185. Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ Res. 2013; 113: 709-24.

186. Sheeran F.L., Pepe S. Energy deficiency in the failing heart: Linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim Biophys Acta. 2006; 1757: 543-52.

187. Militante J.D., Lombardini J.B. Treatment of hypertension with oral taurine: Experimental and clinical studies. Amino Acids. 2002; 23: 381-93.

188. Sun Q., Wang B., Li Y., Sun F., Li P., Xia W., et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension. 2016; 67: 541-9.

189. Sagara M., Murakami S., Mizushima S., Liu L., Mori M., Ikeda K., et al. Taurine in 24-h urine samples is inversely related to cardiovascular risks of middle aged subjects in 50 populations of the world. Adv Exp Med Biol. 2015; 803: 623-36.

190. Yamori Y., Liu L., Mori M., Sagara M., Murakami S., Nara Y., et al. Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv Exp Med Biol. 2009; 643: 13-25.

191. Yamori Y., Murakami S., Ikeda K., Nara Y. Fish and lifestyle-related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine. Clin Exp Pharmacol Physiol. 2004; 31 (Suppl 2): S 20-3.

192. Yamori Y., Taguchi T., Mori H., Mori M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci. 2010; 17 (Suppl 1): S 21.

193. Adedara I.A., Alake S.E., Olajide L.O., Adeyemo M.O., Ajibade T.O., Farombi E.O. Taurine ameliorates thyroid hypofunction and renal injury in L-NAME-induced hypertensive rats. Drug Res. 2019; 69: 83-92.

194. Ibrahim M.A., Eraqi M.M., Alfaiz F.A. Therapeutic role of taurine as antioxidant in reducing hypertension risks in rats. Heliyon. 2020; 6: e03209.

195. Rahman M.M., Park H.M., Kim S.J., Go H.K., Kim G.B., Hong C.U., et al. Taurine prevents hypertension and increases exercise capacity in rats with fructose-induced hypertension. Am J Hypertens. 2011; 24: 574-81.

196. Zaric B.L., Radovanovic J.N., Gluvic Z., Stewart A.J., Essack M., Motwalli O., et al. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes. Front Immunol. 2020; 11: 551758.

197. Dikalov S.I., Ungvari Z. Role of mitochondrial oxidative stress in hypertension. Am J Physiol Heart Circ Physiol. 2013; 305: H1417-27.

198. Esmaeili F., Maleki V., Kheirouri S., Alizadeh M. The effects of taurine supplementation on metabolic profiles, pentosidine, soluble receptor of advanced glycation end products and methylglyoxal in adults with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Can J. Diabetes. 2021; 45: 39-46.

199. Maleki V., Alizadeh M., Esmaeili F., Mahdavi R. The effects of taurine supplementation on glycemic control and serum lipidprofile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Amino Acids. 2020; 52: 905-14.

200. Maleki V., Mahdavi R., Hajizadeh-Sharafabad F., Alizadeh M. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, doubleblind, placebo-controlled trial. Diabetol Metab Syndr. 2020; 12: 9.

201. De Luca G., Calpona P.R., Caponetti A., Romano G., Di Benedetto A., Cucinotta D., et al. Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism. 2001; 50: 60-4.

202. Franconi F., Bennardini F., Mattana A., Miceli M., Ciuti M., Mian M., et al. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr. 1995; 61: 1115-9.

203. Sak D., Erdenen F., Muderrisoglu C., Altunoglu E., Sozer V., Gungel H., et al. The relationship between plasma taurine levels and diabetic complications in patients with type 2 diabetes mellitus. Biomolecules. 2019; 9: 96.

204. Trautwein E.A., Hayes K.C. Plasma and whole blood taurine concentrations respond differently to taurine supplementation (humans) and depletion (cats). Z Ernahrungswiss. 1995; 34: 137-42.

205. Haythorne E., Rohm M., van de Bunt M., Brereton M.F., Tarasov A.I., Blacker T.S., et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic beta-cells. Nat Commun. 2019; 10: 2474.

206. Hyeon J.S., Jung Y., Lee G., Ha H., Hwang G.S. Urinary metabolomic profiling in streptozotocin-induced diabetic mice after treatment with losartan. Int J Mol Sci. 2020; 21: 8969.

207. Trachtman H., Futterweit S., Maesaka J., Ma C., Valderrama E., Fuchs A., et al. Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Physiol. 1995; 269: F429-38.

208. Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002; 23: 599-622.

209. Haber C.A., Lam T.K., Yu Z., Gupta N., Goh T., Bogdanovic E., et al. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab. 2003; 285: E 744-53.

210. Han J., Bae J.H., Kim S.Y., Lee H.Y., Jang B.C., Lee I.K., et al. Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab. 2004; 287: E 1008-18.

211. Ito T., Schaffer S.W., Azuma, J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012; 42: 1529-39.

212. Kim K.S., Oh D.H., Kim J.Y., Lee B.G., You J.S., Chang K.J., et al. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med. 2012; 44: 665-73.

213. Chauncey K.B., Tenner T.E. Jr, Lombardini J.B., Jones B.G., Brooks M.L., Warner R.D., et al. The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol. 2003; 526: 91-6.

214. Nakamura T., Ushiyama C., Suzuki S., Shimada N., Ohmuro H., Ebi-hara I., et al. Effects of taurine and vitamin E on microalbuminuria, plasma metalloproteinase-9, and serum type IV collagen concentrations in patients with diabetic nephropathy. Nephron. 1999; 83: 361-2.

215. Rosa F.T., Freitas E.C., Deminice R., Jordao A.A., Marchini J.S. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014; 53: 823-30.

216. Mizushima S., Nara Y., Sawamura M., Yamori Y. Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol. 1996; 403: 615-22.

217. De Carvalho F.G., Brandao C.F.C., Batitucci G., Souza A.O., Ferrari G.D., Alberici L.C., et al. Taurine supplementation associated with exercise increases mitochondrial activity and fatty acid oxidation gene expression in the subcutaneous white adipose tissue of obese women. Clin Nutr. 2021; 40: 2180-7.

218. Yamori Y. Preliminary report of cardiac study: cross-sectional multicenter study on dietary factors of cardiovascular diseases. CARDIAC Study Group. Clin Exp Hypertens A. 1989; 11: 957-72.

219. Harada H., Tsujino T., Watari Y., Nonaka H., Emoto N., Yokoyama M. Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels. 2004; 19: 132-6.

220. Harada N., Ninomiya C., Osako Y., Morishima M., Mawatari K., Takahashi A., et al. Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats. Obes Res. 2004; 12: 1077-84.

221. Nandhini A.T., Thirunavukkarasu V., Ravichandran M.K., Anu-radha C.V. Effect of taurine on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats. Singapore Med J. 2005; 46: 82-7.

222. Nardelli T.R., Ribeiro R.A., Balbo S.L., Vanzela E.C., Carneiro E.M., Boschero A.C., et al. Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids. 2011; 41: 901-8.

223. Tsuboyama-Kasaoka N., Shozawa C., Sano K., Kamei Y., Kasaoka S., Hosokawa Y., et al. Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology. 2006; 147: 3276-84.

224. Fukuda M., Nagao Y. Dynamic derangement in amino acid profile during and after a stroke-like episode in adult-onset mitochondrial disease: a case report. J Med Case Rep. 2019; 13: 313.

225. Che Y., Hou L., Sun F., Zhang C., Liu X., Piao F., et al. Taurine protects dopaminergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization. Cell Death Dis. 2018; 9: 435.

226. Hou L., Che Y., Sun F., Wang Q. Taurine protects noradrenergic locus coeruleus neurons in a mouse Parkinson’s disease model by inhibiting microglial M1 polarization. Amino Acids. 2018; 50: 547-56.

227. Jang H., Lee S., Choi S.L., Kim H.Y., Baek S., Kim Y. Taurine directly binds to oligomeric amyloid-beta and recovers cognitive deficits in Alzheimer model mice. Adv Exp Med Biol. 2017; 975 (Pt 1): 233-41.

228. Kim H.Y., Kim H.V., Yoon J.H., Kang B.R., Cho S.M., Lee S., et al. Taurine in drinking water recovers learning and memory in the adult APP/ PS 1 mouse model of Alzheimer’s disease. Sci Rep. 2014; 4: 7467.

229. Oh S.J., Lee H.J., Jeong YJ., Nam K.R., Kang K.J., Han S.J., et al. Evaluation of the neuroprotective effect of taurine in Alzheimer’s disease using functional molecular imaging. Sci Rep. 2020; 10: 15551.

230. Santa-Maria I., Hernandez F., Moreno F.J., Avila J. Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-beta-peptide aggregation. Neurosci Lett. 2007; 429: 91-4.

231. Avshalumov M.V., Rice M.E. NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices. J Neurophysiol. 2002; 87: 2896-903.

232. Carvajal F.J., Mattison H.A., Cerpa W. Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast. 2016; 2016: 2701526.

233. Esteras N., Kopach O., Maiolino M., Lariccia V., Amoroso S., Qamar S., et al. Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia. Alzheimers Dement. 2021; May 31.

234. Rossi A., Pizzo P., Filadi R. Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. Biochim Biophys Acta Mol Cell Res. 2019; 1866: 1068-78.

235. Rossi A., Rigotto G., Valente G., Giorgio V., Basso E., Filadi R., et al. Defective mitochondrial pyruvate flux affects cell bioenergetics in Alzheimer’s disease-related models. Cell Rep. 2020; 30: 2332-48.e10.

236. Wang J., Wang F., Mai D., Qu S. Molecular mechanisms of glutamate toxicity in Parkinson’s disease. Front Neurosci. 2020; 14: 585584.

237. Johri A., Beal M.F. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012; 342: 619-30.

238. Wu Y., Chen M., Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019; 49: 35-45.

239. Erickson C.A., Early M., Stigler K.A., Wink L.K., Mullett J.E., McDougle C.J. An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolesc Psychopharmacol. 2011; 21: 565-9.

240. Erickson C.A., Mullett J.E., McDougle C.J. Brief report: a campro-sate in fragile X syndrome. J Autism Dev Disord. 2010; 40: 1412-6.

241. Erickson C.A., Ray B., Maloney B., Wink L.K., Bowers K., Schaefer T.L., et al. Impact of acamprosate on plasma amyloid-beta precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res. 2014; 59: 220-8.

242. Erickson C.A., Wink L.K., Early M.C., Stiegelmeyer E., Mathieu-Frasier L., Patrick V., et al. Brief report: pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder. J Autism Dev Disord. 2014; 44: 981-7.

243. Erickson C.A., Wink L.K., Ray B., Early M.C., Stiegelmeyer E., Mathieu-Frasier L., et al. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology. 2013; 228: 75-84.

244. Wright T.M., Myrick H. Acamprosate: a new tool in the battle against alcohol dependence. Neuropsychiatr Dis Treat. 2006; 2: 445-53.

245. McDougle C.J., Erickson C.A., Stigler K.A., Posey D.J. Neurochemistry in the pathophysiology of autism. J Clin Psychiatry. 2005; 66 (Suppl 10): 9-18.

246. Silverman J.L., Tolu S.S., Barkan C.L., Crawley J.N. Repetitive selfgrooming behavior in the BTBR mouse model of autism is blocked by the mGluR 5 antagonist MPEP. Neuropsychopharmacology. 2010; 35: 976-89.

247. Yizhar O., Fenno L.E., Prigge M., Schneider F., Davidson T.J., O’Shea D.J., et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011; 477: 171-8.

248. Filipek P.A., Juranek J., Smith M., Mays L.Z., Ramos E.R., Bo-cian M., et al. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol. 2003; 53: 801-4.

249. Giulivi C., Zhang Y.F., Omanska-Klusek A., Ross-Inta C., Wong S., Hertz-Picciotto I., et al. Mitochondrial dysfunction in autism. JAMA. 2010; 304: 2389-96.

250. Oliveira G., Diogo L., Grazina M., Garcia P., Ataide A., Marques C., et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005; 47: 185-9.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»