To the content
1 . 2022

Influence of modern antidiabetic therapy on body weight in patients with type 2 diabetes mellitus

Abstract

Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM) and is a major healthcare system challenge. Moderate weight loss (≥5% but <10%) can minimize and reduce complications associated with T2DM, and significant weight loss can even predetermine remission of the disease. The bi-directional relationship between obesity and T2DM is also manifested in the fact that hyperinsulinemia, insulin resistance, in turn, can determine body weight gain in patients with diabetes meltitus. An increase in the volume of visceral and ectopic fat determines not only an increase in insulin resistance, and, as a consequence, an escalation of antidiabetic therapy, but also an increase in cardiovascular risk. Modern antidiabetic therapy has a significant effect on patient weight, prompting careful selection of T2DM management tools. Metformin to a lesser extent, inhibitors of sodium glucose co-transporter type 2 (SGLT2i) and agonists of glucagon-like peptide-1 receptors (GLP-lRa) - to a greater extent reduce the body weight of patients. Dipeptidyl peptidase-4 inhibitors and fixed ratio insulin/GLP-lRa combination therapy appear to have a neutral effect on weight. Insulin secretagogues - sulfonylurea derivatives, meglitinides and insulins lead to weight gain and are associated with a higher risk of severe hypoglycemia due to hyperinsulinemia, making them less suitable for the treatment of obese patients. Somewhat apart are thiazolidinediones, which increase body weight through subcutaneous fat and fluid retention, but decrease visceral fat, thus improving the metabolic profile of patients.

Keywords:type 2 diabetes mellitus; obesity; antidiabetic drugs; antiobesity drugs

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Salukhov V.V., Ilyinskaya T.A., Minakov A.A. Influence of modern antidiabetic therapy on body weight in patients with type 2 diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2022; 11 (1): 39-52. DOI: https://doi.org/10.33029/2304-9529-2022-11-1-39-52 (in Russian)

18. Ametov A.S., Rubtsov Yu.E., Saluhov V.V., Khalimov Yu. Sh., Agafonov P.V. Elimination of adipose tissue dysfunction as a major factor in reducing cardiometabolic risks in obesity. Therapy [Terapiya]. 2019; 5: 6: 66-74. DOI: https://doi.org/10.18565/therapy.2019.6.66-74 (in Russian)

19. Lee J.J., Pedley A., Hoffmann U., Massaro J.M., et al. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: the Framingham Heart Study. Am J Med. 2018; 131 (6): 684-92.e12. DOI: https://doi.org/10.1016/j.amjmed.2018.02.002; PMID: 29518370.

20. Look AHEAD Research Group, Wing R.R., Bolin P., Brancati F.L., Bray G.A., et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med, 2013; 369 (2): 145-54. DOI: https://doi.org/10.1056/NEJMoa1212914

21. Wing R.R., Lang W., Wadden T.A. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011; 37 (7): 1481-6. DOI: https://doi.org/10.2337/dc10-2415

22. Lim E.L., Hollingsworth K.G., Aribisala B.S., et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011; 54 (10): 2506-14. DOI: https://doi.org/10.1007/s00125-011-2204-7

23. Galstyan G.R., Shestakova E.A., Sklyanik I.A. Obesity and type 2 diabetes: can we find a compromised treatment solution? Sakharni diabet [Diabetes Mellitus]. 2017; 20 (4): 270-8. DOI: https://doi.org/10.14341/DM8726 (in Russian)

24. Golay A. Metformin and body weight. Int J Obes (Lond). 2008; 32: 61-72.

25. Kim Y.D., Park K.G., Lee Y.S., et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008; 57 (2): 306-14. DOI: https://doi.org/10.2337/db07-0381; PMID 17909097.

26. McCreight L.J., Bailey C.J., Pearson E.R. Metformin and the gastrointestinal tract. Diabetologia. 2016; 59 (3): 426-35. DOI: https://doi.org/10.1007/s00125-015-3844-9; PMID: 26780750.

27. Hermann L.S., Karlsson J.E., Sjostrand A. Prospective comparative study in NIDDM patient s of metformin and glibenclamide with special eferenceto lipid profiles. Eur J Clin Pharmacol. 1991; 41 (3): 263-5.

28. Sivitz W.I., Phillips L.S., Wexler D.J., Fortmann S.P., et al. GRADE Research Group. Optimization of metformin in the GRADE Cohort: effect on glycemia and body weight. Diabetes Care. 2020; 43 (5): 940-7. DOI: https://doi.org/10.2337/dc19-1769; PMID: 32139384.

29. Ferreira-Hermosillo A., Molina-Ayala M.A., Molina-Guerrero D., Garrido-Mendoza A.P., et al. Efficacy of the treatment with dapagliflozin and metformin compared to metformin monotherapy for weight loss in patients with class III obesity: a randomized controlled trial. Trials. 2020; 21 (1): 186. DOI: https://doi.org/10.1186/s13063-020-4121-x; PMID: 32059692.

30. Hong J.Y., Park K.Y., Kim B.J., Hwang W.M., et al. Effects of short-term exenatide treatment on regional fat distribution, glycated hemoglobin levels, and aortic pulse wave velocity of obese type 2 diabetes mellitus patients. Endocrinol Metab. 2016; 31: 80-5. DOI: https://doi.org/10.3803/EnM.2016.31.1.80

31. Davies M., Pieber T.R., Hartoft-Nielsen M.L., Hansen O.K.H., et al. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA. 2017; 318: 1460-70.

32. Umpierrez G., Tofe Povedano S., Perez Manghi F., et al. Efficacy and safety of dulaglutide monotherapy versus metformin in type 2 diabetes in a randomized controlled trial (AWARD-3). Diabetes Care. 2014; 37 (8): 2168-76. DOI: https://doi.org/0.2337/dc13-2759

33. Weinstock R.S., Guerci B., Umpierrez G., et al. Safety and efficacy of onceweekly dulaglutide versus sitagliptin after 2 years in metformin-treated patients with type 2 diabetes (AWARD-5): a randomized, phase III study. Diabetes Obes Metab. 2015; 17 (9): 849-58. DOI: https://doi.org/10.1111/dom.12479

34. De Fronzo R.A. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005; 28 (5): 1092-100. DOI: https://doi.org/10.2337/diacare.28.5.1092

35. Marre M., Shaw J., Brandle M., Bebakar W.M., et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU). Diabet Med. 2009; 26 (3): 268-78. DOI: https://doi.org/10.1111/j.1464-5491.2009.02666.x; PMID: 19317822.

36. Morano S., Romagnoli E., Filardi T., Nieddu L., et al. Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol. 2015; 52: 727-32. DOI: https://doi.org/10.1007/s00592-014-0710-z

37. lacobellis G., Mohseni M., Bianco S.D., Banga P.K. Liraglutide causes large and rapid epicardial fat reduction. Obesity. 2017; 25: 311-6. DOI: https://doi.org/10.1002/oby.21718

38. Beiroa D., Imbernon M., Gallego R., Senra A., et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014; 63: 3346-58.

39. Zinman B., Bhosekar V., Busch R., Holst I., et al. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): a randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019; 7 (5): 356-67. DOI: : https://doi.org/10.1016/S2213-8587(19)30066-X. Erratum in: Lancet Diabetes Endocrinol. 2019 Mar 11; Erratum in: Lancet Diabetes Endocrinol. 2019; 7 (8): e20; Erratum in: Lancet Diabetes Endocrinol. 2019; 7 (11): e22. PMID: 30833170.

40. Zinman B., Wanner C., Lachin J.M., Fitchett D., et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373: 2117-28.

41. Neal B., Perkovic V., Mahaffey K.W., de Zeeuw D., et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377: 644-57.

42. Wiviott S.D., Raz I., Bonaca M.P., Mosenzon O., et al. DECLARE-TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380: 347-57.

43. Storgaard H., Gluud L.L., Bennett C., et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2016; 11: e0166125.

44. Salukhov V.V., Demidova T.Y. Empagliflozin as a new management strategy on outcomes in patients with type 2 diabetes mellitus. Sakharni diabet [Diabetes Mellitus]. 2016; 19 (6): 494-510. DOI: https://doi.org/10.14341/DM8216

45. Ridderstrale M., Andersen K.R., Zeller C., et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014; 2: 691-700.

46. Kotova M.E., Maxim O.V., Salukhov V.V., Dobrovolskaya L.M., et al. Effect of the sodium-glucose cotransporter-2 inhibitor empagliflosin on certain clinical-laboratory parameters of the cardiovascular system in patients with type 2 diabetes mellitus and high cardiovascular risk. Medline.Ru. 2018; 19: 636-62. (in Russian)

47. Xu L., Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte. 2018; 7 (2): 121-8. DOI: https://doi.org/1080/21623945.2017.1413516; PMID: 29376471.

48. Ohta A., Kato H., Ishii S., Sasaki Y., et al. Ipragliflozin, a sodium glucose cotransporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert Opin Pharmacother. 2017; 18 (14): 1433-8. DOI: https://doi.org/10.1080/14656566.2017.1363888; PMID: 28770629.

49. Koshizaka M. PRIME-V Study Group. Comparing the effects of ipragliflozin versus metformin on visceral fat reduction and metabolic dysfunction in Japanese patients with type 2 diabetes treated with sitagliptin: a prospective, multicentre, open-label, blinded-endpoint, randomized controlled study (PRIME-V study). Diabetes Obes Metab. 2019; 21: 1990-5.

50. Okamoto A., Yokokawa H., Sanada H., Naito T. Changes in levels of biomarkers associated with adipocyte function and insulin and glucagon kinetics during treatment with dapagliflozin among obese type 2 diabetes mellitus patients. Drugs R D. 2016; 16: 255-61.

51. Bolinder J., Ljunggren O., Kullberg J., et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012; 97: 1020-31.

52. Markham A. Ertugliflozin: first global approval. Drugs. 2018; 78: 513-9. DOI: https://doi.org/10.1007/s40265-018-0878-6

53. Pratley R.E. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: The VERTIS FACTORIAL randomized trial. Diabetes Obes Metab. 2018; 20: 1111-20. DOI: https://doi.org/10.1111/dom.13194

54. Salukhov V.V., Ilyinskay T.A. New SGLT2 inhibitor ertugliflozin: safe and effective in the management of type 2 diabetes. Meditsinskiy sovet [Medical Council]. 2020; (7): 32-41. DOI: https://doi.org/10.21518/2079-701X-2020-7-32-41

55. Dagogo-Jack S., Liu J., Eldor R., Amorin G., et al. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: The VERTIS SITA2 placebo-controlled randomized study. Diabetes Obes Metab. 2018; 20 (3): 530-40. DOI: https://doi.org/10.1111/dom.13116; PMID: 28921862.

56. Ferrannini G., Hach T., Crowe S., Sanghvi A., et al. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015; 38: 1730-5.

57. Hollander P., Bays, H.E., Rosenstock J., Frustaci M.E., et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care. 2017; 40 (5): 632-9. DOI: https://doi.org/10.2337/dc16-2427. PMID: 28289041.

58. Salukhov V.V. The results and the meaning of EMPA-REG OUTCOME and LEADER studies for modern diabetology: in search of ideal combination. Meditsinskiy sovet [Medical Council]. 2019; (4): 44-51. DOI: https://doi.org/10.21518/2079-701X-2019-4-44-51 (in Russian)

59. McCrimmon R.J., Catarig AM., Frias J.P., et al. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia. 2020; 63: 473-85. DOI: https://doi.org/10.1007/s00125-019-05065-8

60. Salukhov V.V., Kotova M.E. Main effects caused by SGLT2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2019; 8 (3): 61-74. DOI: https://doi.org/10.24411/2304-9529-2019-13007 (in Russian)

61. Tanaka S., Kanazawa I., Notsu M., Sugimoto T. Visceral fat obesity increases serum DPP-4 levels in men with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2016; 116: 1-6. DOI: https://doi.org/10.1016/j.diabres.2016.04.027

62. Apovian C.M., Okemah J., O'Neil P.M. Body weight considerations in the management of type 2 diabetes. Adv Ther. 2019; 36: 44-58. DOI: https://doi.org/10.1007/s12325-018-0824-8

63. Diabetes mellitus type 2: from theory to practice. Edited by Academician of the Russian Academy of Sciences I.I. Dedov, Corresponding Member of the Russian Academy of Sciences M.V. Shestakova. Moscow: Medical Information Agency; 2016: 576 p. (in Russian)

64. Levin D., Bell S., Sund R., et al. Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologia. 2015; 58 (3): 493-504. DOI: https://doi.org/10.1007/s00125-014-3456-9

65. Ryder R.E.J., DeFronzo R.A. Pioglitazone: inexpensive; very effective at reducing HbA1c; no evidence of bladder cancer risk; plenty of evidence of cardiovascular benefit. Diabet Med. 2019; 36 (9): 1185-6. DOI: https://doi.org/10.1111/dme.14053; PMID: 31215063.

66. McIntosh B., Cameron C., Singh S.R., et al. Secondline therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a systematic review and mixed-treatment comparison meta-analysis. Open Med. 2011; 5: e35-48.

67. Gerstein H.C., Yusuf S., Bosch J., et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006; 368: 1096-105.

68. Dormandy J.A., Charbonnel B., Eckland D.J., et al. Secondary prevention of macrovascular events in patients with Type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial InmacroVascular Events): a randomised controlled trial. Lancet. 2005; 366: 1279-89.

69. Bailey S.D., Xie C., Do R., et al. Variation at the NFATC 2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study. Diabetes Care. 2010; 33: 2250-3.

70. Viswanathan V., Mohan V., Subramani P., Parthasarathy N., et al. Effect of spironolactone and amilorideon thiazolidinedione-induced fluid retention in South Indian patients with type 2 diabetes. Clin J Am SocNephrol. 2013; 8 (2): 225-32. DOI: https://doi.org/10.2215/CJN.06330612; PMID: 23184569.

71. DeFronzo R.A., Inzucchi S., Abdul-Ghani M., Nissen S.E. Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res. 2019; 16 (2): 133-43. DOI: https://doi.org/10.1177/1479164118825376; PMID: 30706731.

72. Kwon M.J., Lee Y.J., Jung H.S., Shin H.M., et al. The direct effect of lobeglitazone, a new thiazolidinedione, on pancreatic beta cells: A comparison with other thiazolidinediones. Diabetes Res Clin Pract. 2019; 151: 209-23. DOI: https://doi.org/10.1016/j.diabres.2019.04.006; PMID: 30954516.

73. Fiorentino T.V., Monroy A., Kamath S., Sotero R., et al. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism. 2021; 114: 154416. DOI: https://doi.org/10.1016/j.metabol.2020.154416; PMID: 33137378.

74. Abdul-Ghani M., Migahid O., Megahed A., Singh R., et al. Pioglitazone prevents the increase in plasma ketone concentration associated with dapagliflozin in insulin-treated T2DM patients: results from the Qatar Study. Diabetes Obes Metab. 2019; 21 (3): 705-9. DOI: https://doi.org/10.1111/dom.13546; PMID: 30259621.

75. Hirst J.A., Farmer A.J., Dyar A., Lung T.W., Stevens R.J. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia. 2013; 56: 973-84.

76. Feng W.H., Bi Y., Li P., Yin T.T., et al. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: a randomized trial. J Diabetes Investig. 2019; 10 (2): 399-407. DOI: https://doi.org/10.1111/jdi.12888; PMID: 29957886.

77. McIntosh B., Cameron C., Singh S.R., Yu C., et al. Choice of therapy in patients with type 2 diabetes in adequately controlled with metformin and sulphonylurea: asystematic review and mixed-treatment comparison meta-analysis. Open Med. 2012; 6: e62-74.

78. UK Prospective Diabetes Study Group: UKProspective Diabetes Study 16. Overview of6 years' therapy of type II diabetes: a progressive disease. Diabetes. 1995; 44: 1249-58.

79. Peyrot M., Rubin R.R., Lauritzen T., et al. Resistance to insulin therapy among patientsand providers: results of the cross-national Diabetes Attitudes, Wishes, and Needs (DAWN) study. Diabetes Care. 2005; 28: 2673-9.

80. Pontiroli A.E., Morabito A. Long-term prevention of mortality in morbidobesity through bariatric surgery. A systematic review and meta-analysis of trialsperformed with gastric banding and gastric bypass. Ann Surg. 2011; 253: 484-7.

81. Rys P., Wojciechowski P., Rogoz-Sitek A., et al. Systematic review and metaanalysis of randomized clinical trials comparing efficacy and safety outcomes of insulin glargine with NPH insulin, premixedinsulin preparations or with insulin detemirin type 2 diabetes mellitus. Acta Diabetol. 2015; 52: 649-62.

82. Valentine V., Goldman J., Shubrook J.H. Rationalefor, initiation and titration of the basal insulin/GLP-1RA fixed-ratio combination products, IDegliraand IGlarlixi, for the management of type 2diabetes. DiabetesTher. 2017; 8: 739-52. DOI: https://doi.org/10.1007/s13300-017-0287-y

83. Rosenstock J., Aronson R., Grunberger G., et al. Benefitsof Lixilan, a titratable fixed-ratio combinationof insulin glargine plus lixisenatide, versus insulinglargine and lixisenatidemonocomponents in type2 diabetes inadequately controlled on oral agents: the Lixilan-O randomized trial. Diabetes Care. 2016; 39: 2026-35.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»