To the content
2 . 2022

Adipose tissue as a plastic organ to management obesity and diabetes mellitus


Obesity is a risk factor for metabolic syndrome associated with the serious chronic diseases such as type 2 diabetes mellitus, cardiovascular events, osteoarthrosis, etc. Adipose tissue is a multifunctional organ in which white adipocytes can be transformed into to beige, but also vice versa. This phenomenon, known as the process of «browning» of white adipose tissue, is a new target for drugs that affect obesity. Drugs such as sibutramine, rosiglitazone, metformin, GLP‑1 agonists can affect the plasticity of adipose tissue, which subsequently leads to the effective treatment of obesity.

Keywords:obesity; metabolic syndrome; «browning»; sibutramine

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Misharova A.P., Ametov A.S. Adipose tissue as a plastic organ to management obesity and diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2022; 11 (2): 64–70. DOI: (in Russian)


1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017; 390 (10113): 2627–42.

2. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016; 387 (10026): 1377–96.

3. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15 (5): 288–98.

4. Berrington de Gonzalez A., Hartge P., Cerhan J.R., et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010; 363 (23): 2211–9.

5. Pischon T., Boeing H., Hoffmann K., et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med. 2008; 359 (20): 2105–20.

6. WHO. World Health Organization. 2016. ProMED-mail website. Available at: Accessed 19 March 2020.

7. Bray G.A., Kim K.K., Wilding J.P.H.; World Obesity Federation. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017; 18 (7):715–23.

8. Neeland I.J., Ross R., Després J.P., et al.; International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019; (9): 715–25.

9. Meigs J.B., Wilson P.W., Fox C.S., et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006; 91 (8): 2906–12.

10. Magkos F. Metabolically healthy obesity: what’s in a name? Am J Clin Nutr. 2019; 110 (3): 533–9.

11. van Vliet-Ostaptchouk J.V., Nuotio M.L., Slagter N., et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014; 14: 9.

12. Cypess A.M., Lehman S., Williams G., et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009; 360 (15): 1509–17.

13. Virtanen K.A., Lidell M.E., Orava J., et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009; 360(15): 1518–25.

14. Seale P., Bjork B., Yang W.L., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008; 454 (7207): 961–7.

15. Sanchez-Gurmaches J., Hung C.M., Sparks C.A., et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 2012; 16 (3): 348–62.

16. Scheele C., Wolfrum C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr Rev. 2020; 41: 53–6. DOI:

17. Cinti S. Adipose organ development and remodeling. Compr Physiol. 2018; 8 (4): 1357–431. DOI:

18. Zinngrebe J., Debatin K.M., Fischer-Posovszky P. Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? Leukemia. 2020; 34 (9): 2305–16. DOI:

19. Bielczyk-Maczynska E. White adipocyte plasticity in physiology and disease. Cells. 2019; 8 (12): 1507. DOI:

20. Lim S., Honek J., Xue Y., et al. Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nat Protoc. 2012; 7 (3): 606–15.

21. Xiao C., Goldgof M., Gavrilova O., et al. Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22°C. Obesity. 2015; 23 (7): 1450–9.

22. Wu J., Boström P., Sparks L.M., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012; 150 (2): 366–76.

23. Kaisanlahti A., Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem. 2019; 75 (1): 1–10.

24. Harms M., Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013; 19 (10): 1252–63.

25. Yao L., Cui X., Chen Q., et al. Cold-inducible SIRT6 regulates thermogenesis of brown and beige fat. Cell Rep. 2017; 20 (3): 641–54.

26. Jong J.M.A.D., Wouters R.T.F., Boulet N., et al. The β3-adrenergic receptor is dispensable for browning of adipose tissues. Am J Physiol Endocrinol Metab. 2017; 312 (6): E 508–18.

27. Cheng L., Wang J., Dai H., Duan Y., et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021; 10 (1): 48–65. DOI:

28. Rao R., Long J., White J., et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014; 157 (6): 1279–91.

29. Richter E.A., Hargreaves H.M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013; 93 (3): 993–1017.

30. Wolfe R.R., Klein S., Carraro F., et al. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol. 1990; 258 (2 Pt1): E 382–89.

31. Cao L., Choi E.Y., Liu X., et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011; 14 (3): 324–38.

32. Boström P., Wu J., Jedrychowski M.P., et al. A PGC 1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2013; 481 (4): 463–8.

33. Liang X., Pan J., Cao C., et al. Transcriptional response of subcutaneous white adipose tissue to acute cold exposure in mice. Int J Mol Sci. 2019; 20 (16): 3968.

34. Nedergaard J., Bengtsson T., Cannon B. New powers of brown fat: fighting the metabolic syndrome. Cell Metab. 2011; 13 (3): 238–40.

35. Liu X., Wang S., You Y., et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology. 2015; 156 (7): 2461–9.

36. White J.D., Dewal R.S., Stanford K.I. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med. 2019; 68:74–81.

37. Gunawardana S.C., Piston D.W. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012; 61 (3): 674–82.

38. Li G., Xie C., Lu S., et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 2017; 26 (4): 672–85.e4.

39. Sahuri-Arisoylu M., Brody L.P., Parkinson J.R., et al. Reprogramming of hepatic fat accumulation and browning of adipose tissue by the short-chain fatty acid acetate. Int J Obes. 2016; 40 (6): 955–63.

40. Petersen C., Nielsen M.D., Andersen E.S., et al. MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism. Sci Rep. 2017; 7 (1): 13101.

41. Fabbiano S., Suárez-Zamorano N., Rigo D., et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 2016; 24 (3): 434–46.

42. Krause K. Novel aspects of white adipose tissue browning by thyroid hormones. Exp Clin Endocrinol Diabetes. 2020; 128 (6-07): 446–9. DOI:

43. Martínez-Sánchez N., Moreno-Navarrete J.M., Contreras C, et al. Thyroid hormones induce browning of white fat. J Endocrinol. 2017; 232 (2): 351–62.

44. Weiner J., Kranz M., Klöting N., et al. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci Rep. 2016; 6 (1): 38124.

45. Giordano A., Centemeri C., Zingaretti M., et al. Sibutramine-dependent brown fat activation in rats: an immunohistochemical study. Int J Obes. 2002; 26 (3): 354–60. DOI:

46. Ghorbani M., Himms-Hagen J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord. 1997; 21 (6): 465–75.

47. Emilsson V., Summers R.J., Hamilton S.H., et al. The effects of the β3-adrenoceptor agonist BRL 35135 on UCP isoform mRNA expression. Biochem Biophys Res Commun. 1998; 252 (2): 450–4.

48. Park J.W., Jung K.H., Lee J.H., Quach C.H., et al. 18F-FDG PET/CT monitoring of β3 agonist-stimulated brown adipocyte recruitment in white adipose tissue. J Nucl Med. 2014; 56 (1): 153–8.

49. Larsen T.M., Toubro S., van Baak M.A., et al. Effect of a 28-d treatment with L-796568, a novel beta (3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr. 2002; 76 (4): 780–8.

50. Cypess A., Weiner L., Roberts-Toler C., et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015; 21(1): 33–8.

51. Taylor D., Gottlieb R.A. Parkin-mediated mitophagy is downregulated in browning of white adipose tissue. Obesity. 2017; 25 (4): 704–12.

52. Merlin J., Sato M., Nowell C., et al. The PPARγ agonist rosiglitazone promotes the induction of brite adipocytes, increasing β-adrenoceptor-mediated mitochondrial function and glucose uptake. Cell Signal. 2018; 42: 54–66.

53. Zhao L., Zhu C., Lu M., et al. The key role of a glucagon-like peptide-1 receptor agonist in body fat redistribution. J Endocrinol. 2019; 240 (2): 271–86.

54. Bonet M.L., Ribot J., Palou A. Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta. 2012; 1821 (1): 177–89.

55. Kim E.K., Lee S.H., Jhun J.Y., Byun J.K., et al. Metformin prevents fatty liver and improves balance of white/brown adipose in an obesity mouse model by inducing FGF21. Mediators Inflamm. 2016; 2016: 5813030. DOI:

56. Gokcel A., Gumurdulu Y., Karakose H., Melek Ertorer E., et al. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity. Diabetes Obes Metab. 2002; 4 (1): 49–55. DOI:

57. Saraç F., Pehlivan M., Celebi G., Saygili F., et al. Effects of sibutramine on thermogenesis in obese patients assessed via immersion calorimetry. Adv Ther. 2006; 23 (6): 1016–29. DOI:

Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Medicine today

Уважаемые коллеги, до XI-го Национального конгресса с международным участием имени Н.О. Миланова "Пластическая хирургия, эстетическая медицина и косметология" осталось 3 дня! С 29 ноября по 1 декабря 2022 года в Москве пройдет XI Национальный конгресс "Пластическая хирургия,...

6-7 декабря 2022 года состоится юбилейная X конференция с международным участием "Креативная кардиология и кардиохирургия. Новые технологии диагностики и лечения заболеваний сердца", которая будет проходить в очном и онлайн-формате в ФГБУ "НМИЦ ССХ им. А.Н. Бакулева"...

Приглашаем 1 и 2 декабря в Москву на яркий профессиональный праздник - итоговую всероссийскую Школу РОАГ! Школа в Москве занимает особое место в образовательном цикле Школ РОАГ. На ней подводятся итоги прошедшего сезона, обсуждаются темы, которые вызывают наибольший интерес...

Journals of «GEOTAR-Media»