To the content
1 . 2023

Obstructive sleep apnea syndrome and insulin resistance: is there a relationship?

Abstract

Sleep breathing disorders are one of the important problems of modern healthcare. The most common in the clinical practice of different specialties is obstructive sleep apnea syndrome (OSA). A large number of experimental and clinical studies indicate a close bidirectional relationship of OSA with impaired glucose metabolism and type 2 diabetes mellitus. The review presents the latest research data on epidemiology, pathophysiological mechanisms that underlie OSA and insulin resistance, as well as the effect of correction of respiratory disorders during sleep on glucose metabolism.

Keywords:sleep breathing disorders; obstructive sleep apnea syndrome; insulin resistance; type 2 diabetes mellitus; CPAP therapy

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Lebedeva D.D., Pyanykh O.P., Ragozin A.K. Obstructive sleep apnea syndrome and insulin resistance: is there a relationship? Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2023; 12 (1): 56–65. DOI: https://doi.org/10.33029/2304-9529-2023-12-1-56-65 (in Russian)

References

1. Santamaría-Ulloa C., Montero-López M., Rosero-Bixby L. Diabetes epidemics: inequalities increase the burden on the healthcare system. Health Policy Plan. 2019; 34 (suppl 2): ii45–55. DOI: https://doi.org/10.1093/heapol/czz109

2. Raghavan S., Vassy J.L., Ho Y., et al. Diabetes mellitus-related all cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019; 8 (4): e011295. DOI: https://doi.org/10.1161/JAHA.118.011295

3. Wu W.C., Wei J.N., Chen S.C., et al. Progression of insulin resistance: A link between risk factors and the incidence of diabetes. Diabetes Res Clin Pract. 2020; 161: 108050. DOI: https://doi.org/10.1016/j.diabres.2020.108050

4. Jehan S., Myers A.K., Zizi F., Pandi-Perumal S.R., et al. Obesity., obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med Disord Int J. 2018; 2 (3): 52–8.

5. Punjabi N.M., Sorkin J.D., Katzel L.I., Goldberg A.P., et al. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002; 165 (5): 677–82. DOI: https://doi.org/10.1164/ajrccm.165.5.2104087

6. Sateia M.J. International Classification of Sleep Disorders – third edition. Chest. 2014; 146 (5): 1387–94. DOI: https://doi.org/10.1378/chest.14-0970

7. Eckert D.J., Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008; 5 (2): 144–53. DOI: https://doi.org/10.1513/pats.200707-114MG

8. Laratta C.R., Ayas N.T., Povitz M., Pendharkar S.R. Diagnosis and treatment of obstructive sleep apnea in adults. Can Med Assoc J. 2017; 189 (48): E 1481–88. DOI: https://doi.org/10.1503/cmaj.170296

9. Kalsi J., Tervo T., Bachour A., Partinen M. Sleep versus non−sleep-related fatal road accidents. Sleep Med. 2018; 51: 148–52. DOI: https://doi.org/10.1016/j.sleep.2018.04.017

10. Léger D., Stepnowsky C. The economic and societal burden of excessive daytime sleepiness in patients with obstructive sleep apnea. Sleep Med Rev. 2020; 51: 101275. DOI: https://doi.org/10.1016/j.smrv.2020.101275

11. Yeghiazarians Y., Jneid H., Tietjens J.R., et al. Obstructive sleep apnea and cardiovascular disease: A scientific statement from the American Heart Association. Circulation. 2021; 144 (3): e56–67. DOI: https://doi.org/10.1161/CIR.0000000000000988

12. Bonsignore M.R., Baiamonte P., Mazzuca E., Castrogiovanni A., Marrone O. Obstructive sleep apnea and comorbidities: a dangerous liaison. Multidiscip Respir Med. 2019; 14 (1): 8. DOI: https://doi.org/10.1186/s40248-019-0172-9

13. Kendzerska T., Gershon A.S., Hawker G., Tomlinson G., Leung R.S. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med. 2014; 190 (2): 218–25. DOI: https://doi.org/10.1164/rccm.201312-2209OC

14. El Sayed N.A., Aleppo G., Aroda V.R., et al. 5. Facilitating positive health behaviors and well-being to improve health outcomes: Standards of Care in Diabetes – 2023. Diabetes Care. 2023; 46 (suppl 1): S 68–96. DOI: https://doi.org/10.2337/dc23-S-005

15. Lin C.M., Davidson T.M., Ancoli-Israel S. Gender differences in obstructive sleep apnea and treatment implications. Sleep Med Rev. 2008; 12 (6): 481–96. DOI: https://doi.org/10.1016/j.smrv.2007.11.003

16. Punjabi N.M. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008; 5 (2): 136–43. DOI: https://doi.org/10.1513/pats.200709-155MG

17. Thompson C., Legault J., Moullec G., et al. A portrait of obstructive sleep apnea risk factors in 27,210 middle-aged and older adults in the Canadian Longitudinal Study on Aging. Sci Rep. 2022; 12 (1): 5127. DOI: https://doi.org/10.1038/s41598-022-08164-6

18. Motamedi G.K. Obstructive sleep apnea; is it the anatomy or physiology? Clin Neurophysiol. 2014; 125 (9): 1717–18. DOI: https://doi.org/10.1016/j.clinph.2014.02.004

19. Benjafield A.V., Ayas N.T., Eastwood P.R., et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med. 2019; 7 (8): 687–98. DOI: https://doi.org/10.1016/S-2213-2600(19)30198-5

20. Khokhrina A., Andreeva E., Degryse J.M. The prevalence of sleep-disordered breathing in Northwest Russia: The ARKHsleep study. Chron Respir Dis. 2020; 17: 147997312092810. DOI: https://doi.org/10.1177/1479973120928103

21. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018; 20 (2): 12. DOI: https://doi.org/10.1007/s11906-018-0812-z

22. Vilela B.S., Vasques A.C.J., Cassani R.S.L., et al. The HOMA-Adiponectin (HOMA-AD) Closely Mirrors the HOMA-IR Index in the Screening of Insulin Resistance in the Brazilian Metabolic Syndrome Study (BRAMS). Atkin S.L., ed. PLoS One. 2016; 11 (8): e0158751. DOI: https://doi.org/10.1371/journal.pone.0158751

23. Lavrenova E.A., Drapkina O.M. Insulin resistance in obesity: pathogenesis and effects. Ozhirenie i metabolism [Obesity and Metabolism]. 2020; 17 (1): 48–55. (in Russian)

24. Son D.H., Lee H.S., Lee Y.J., Lee J.H., Han J.H. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis. 2022; 32 (3): 596–604. DOI: https://doi.org/10.1016/j.numecd.2021.11.017

25. Framnes S.N., Arble D.M. The bidirectional relationship between obstructive sleep apnea and metabolic disease. Front Endocrinol. 2018; 9: 440. DOI: https://doi.org/10.3389/fendo.2018.00440

26. Dong Z., Xu X., Wang C., Cartledge S., Maddison R., Shariful Islam S.M. Association of overweight and obesity with obstructive sleep apnoea: A systematic review and meta-analysis. Obes Med. 2020; 17: 100185. DOI: https://doi.org/10.1016/j.obmed.2020.100185

27. Piper A.J., Grunstein R.R. Big breathing: the complex interaction of obesity, hypoventilation, weight loss, and respiratory function. J Appl Physiol. 2010; 108 (1): 199–205. DOI: https://doi.org/10.1152/japplphysiol.00713.2009

28. Fogel R.B., Trinder J., White D.P., et al. The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls: Genioglossal activity in OSA versus normals during sleep onset. J Physiol. 2005; 564 (2): 549–62. DOI: https://doi.org/10.1113/jphysiol.2005.083659

29. Jang M.S., Kim H.Y., Dhong H.J., et al. Effect of parapharyngeal fat on dynamic obstruction of the upper airway in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2014; 190 (11): 1318–21. DOI: https://doi.org/10.1164/rccm.201408-1498LE

30. Isono S. Obesity and obstructive sleep apnoea: Mechanisms for increased collapsibility of the passive pharyngeal airway: Role of obesity in pharyngeal obstruction. Respirology. 2012; 17 (1): 32–42. DOI: https://doi.org/10.1111/j.1440-1843.2011.02093.x

31. Dempsey J.A., Veasey S.C., Morgan B.J., O’Donnell C.P. Pathophysiology of sleep apnea. Physiol Rev. 2010; 90 (1): 47–112. DOI: https://doi.org/10.1152/physrev.00043.2008

32. Maniaci A., Iannella G., Cocuzza S., et al. Oxidative stress and inflammation biomarker expression in obstructive sleep apnea patients. J Clin Med. 2021; 10 (2): 277. DOI: https://doi.org/10.3390/jcm10020277

33. Murphy A.M., Thomas A., Crinion S.J., et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J. 2017; 49 (4): 1601731. DOI: https://doi.org/10.1183/13993003.01731-2016

34. Li M., Chi X., Wang Y., Setrerrahmane S., Xie W., Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022; 7 (1): 216. DOI: https://doi.org/10.1038/s41392-022-01073-0

35. Gao D., Madi M., Ding C., et al. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol-Endocrinol Metab. 2014; 307 (3): E 289–304. DOI: https://doi.org/10.1152/ajpendo.00430.2013

36. Shaw L.M. The insulin receptor substrate (IRS) proteins: At the intersection of metabolism and cancer. Cell Cycle. 2011; 10 (11): 1750–56. DOI: https://doi.org/10.4161/cc.10.11.15824

37. Maedler K., Sergeev P., Ris F., et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002; 110 (6): 851–60. DOI: https://doi.org/10.1172/JCI200215318

38. Donath M.Y., Böni-Schnetzler M., Ellingsgaard H., Ehses J.A. Islet inflammation impairs the pancreatic β-cell in type 2 diabetes. Physiology. 2009; 24 (6): 325–31. DOI: https://doi.org/10.1152/physiol.00032.2009

39. Oh K.J., Lee D., Kim W., Han B., et al. Metabolic adaptation in obesity and type ii diabetes: myokines., adipokines and hepatokines. Int J Mol Sci. 2016; 18 (1): 8. DOI: https://doi.org/10.3390/ijms18010008

40. Alberti A., Sarchielli P., Gallinella E., et al. Plasma cytokine levels in patients with obstructive sleep apnea syndrome: A preliminary study: Cytokines in obstructive sleep apnea. J Sleep Res. 2003; 12 (4): 305–11. DOI: https://doi.org/10.1111/j.1365-2869.2003.00361.x

41. Nadeem R., Molnar J., Madbouly E.M., et al. Serum inflammatory markers in obstructive sleep apnea: A meta-analysis. J Clin Sleep Med. 2013; 9 (10): 1003–12. DOI: https://doi.org/10.5664/jcsm.3070

42. Thunström E., Glantz H., Fu M., et al. Increased inflammatory activity in nonobese patients with coronary artery disease and obstructive sleep apnea. Sleep. 2015; 38 (3): 463–71. DOI: https://doi.org/10.5665/sleep.4510

43. Uysal K.T., Wiesbrock S.M., Marino M.W., Hotamisligil G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature. 1997; 389 (6651): 610–4. DOI: https://doi.org/10.1038/39335

44. Hivert M.F., Sullivan L.M., Fox C.S., et al. Associations of adiponectin, resistin, and tumor necrosis factor-α with insulin resistance. J Clin Endocrinol Metab. 2008; 93 (8): 3165–72. DOI: https://doi.org/10.1210/jc.2008-0425

45. Shibata T., Takaguri A., Ichihara K., Satoh K. Inhibition of the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 by AICAR. J Pharmacol Sci. 2013; 122 (2): 93–102. DOI: https://doi.org/10.1254/jphs.12270FP

46. Kwon H., Pessin J.E. Adipokines mediate inflammation and insulin resistance. Front Endocrinol. 2013; 4. DOI: https://doi.org/10.3389/fendo.2013.00071

47. Park H.K., Ahima R.S. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015; 64 (1): 24–34. DOI: https://doi.org/10.1016/j.metabol.2014.08.004

48. Berger S., Pho H., Fleury-Curado T., et al. Intranasal leptin relieves sleep-disordered breathing in mice with diet-induced obesity. Am J Respir Crit Care Med. 2019; 199 (6): 773–83. DOI: https://doi.org/10.1164/rccm.201805-0879OC

49. Bingol Z., Karaayvaz E.B., Telci A., Bilge A.K., Okumus G., Kiyan E. Leptin and adiponectin levels in obstructive sleep apnea phenotypes. Biomark Med. 2019; 13 (10): 865–74. DOI: https://doi.org/10.2217/bmm-2018-0293

50. Laposky A.D., Shelton J., Bass J., Dugovic C., Perrino N., Turek F.W. Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2006; 290 (4): R 894–903. DOI: https://doi.org/10.1152/ajpregu.00304.2005

51. Mokhlesi B., Punjabi N.M. «REM-related» obstructive sleep apnea: An epiphenomenon or a clinically important entity? Sleep. 2012; 35 (1): 5–7. DOI: https://doi.org/10.5665/sleep.1570

15. Wang Z.V., Scherer P.E. Adiponectin., the past two decades. J Mol Cell Biol. 2016; 8 (2): 93–100. DOI: https://doi.org/10.1093/jmcb/mjw011

16. Kotani K., Sakane N., Saiga K., et al. Serum adiponectin levels and lifestyle factors in Japanese men. Heart Vessels. 2007; 22 (5): 291–6. DOI: https://doi.org/10.1007/s00380-006-0969-2

17. Zeng F., Wang X., Hu W., Wang L. Association of adiponectin level and obstructive sleep apnea prevalence in obese subjects. Medicine (Baltimore). 2017; 96 (32): e7784. DOI: https://doi.org/10.1097/MD.0000000000007784

18. Lu M., Fang F., Wang Z., Wei P., Hu C., Wei Y. Association between serum/plasma levels of adiponectin and obstructive sleep apnea hypopnea syndrome: A meta-analysis. Lipids Health Dis. 2019; 18 (1): 30. DOI: https://doi.org/10.1186/s12944-019-0973-z

19. Moreira M.C., Pinto I.S., Mourão A.A., Fajemiroye J.O., et al. Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome? Front Physiol. 2015; 6. DOI: https://doi.org/10.3389/fphys.2015.00234

20. Abboud F., Kumar R. Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. J Clin Invest. 2014; 124 (4): 1454–57. DOI: https://doi.org/10.1172/JCI70420

21. Song S.O., He K., Narla R.R., Kang H.G., Ryu H.U., Boyko E.J. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab J. 2019; 43 (2): 144. DOI: https://doi.org/10.4093/dmj.2018.0256

22. Chirinos J.A., Gurubhagavatula I., Teff K., et al. CPAP, weight loss, or both for obstructive sleep apnea. N Engl J Med. 2014; 370 (24): 2265–75. DOI: https://doi.org/10.1056/NEJMoa1306187

23. Tuomilehto H., Seppä J., Uusitupa M., Tuomilehto J., et al. Weight reduction and increased physical activity to prevent the progression of obstructive sleep apnea: A 4-year observational postintervention follow-up of a randomized clinical trial. JAMA Intern Med. 2013; 173 (10): 930. DOI: https://doi.org/10.1001/jamainternmed.2013.389

24. Edwards B.A., Bristow C., O’Driscoll D.M., et al. Assessing the impact of diet, exercise and the combination of the two as a treatment for OSA: A systematic review and meta-analysis. Respirology. 2019; 24 (8): 740–51. DOI: https://doi.org/10.1111/resp.13580

25. Dieltjens M., Verbruggen A.E., Braem M.J., et al. Determinants of objective compliance during oral appliance therapy in patients with sleep-related disordered breathing: A prospective clinical trial. JAMA Otolaryngol Head Neck Surg. 2015; 141 (10): 894–900. DOI: https://doi.org/10.1001/jamaoto.2015.1756

26. Randerath W., Verbraecken J., de Raaff C.A.L., et al. European Respiratory Society guideline on non-CPAP therapies for obstructive sleep apnoea. Eur Respir Rev. 2021; 30 (162): 210200. DOI: https://doi.org/10.1183/16000617.0200-2021

27. Gupta A., Tripathi A., Rai P., Sharma P., et al. Effect of mandibular advancement splint on obstructive sleep apnea with insulin resistant diabetes. J Sleep Med. 2020; 17 (1): 44–8. DOI: https://doi.org/10.13078/jsm.200001

28. Verbraecken J., Dieltjens M., Op de Beeck S., et al. Non-CPAP therapy for obstructive sleep apnoea. Breathe. 2022; 18 (3): 220164. DOI: https://doi.org/10.1183/20734735.0164-2022

29. Giles T., Lasserson T., Smith B., White J., et al. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev. 2006; 3: CD 001106. DOI: https://doi.org/10.1002/14651858.CD-001106.pub2

30. Tietjens J.R., Claman D., Kezirian E.J., et al. Obstructive sleep apnea in cardiovascular disease: A review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019; 8 (1): e010440. DOI: https://doi.org/10.1161/JAHA.118.010440

31. Gorbunova M.V., Babak S.L., Maliavin A.G. Long-term effect of continuous positive airway pressure therapy (CPAP) in hypertensive patients with sleep apnea and metabolic impairment. Arkhiv vnutrenney meditsiny [Archives of Internal Medicine]. 2017; 7 (5): 371–7. (in Russian)

32. Holmqvist F., Guan N., Zhu Z., et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation – Results from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am Heart J. 2015; 169 (5): 647–54.e2. DOI: https://doi.org/10.1016/j.ahj.2014.12.024

33. Neilan T.G., Farhad H., Dodson J.A., et al. Effect of sleep apnea and continuous positive airway pressure on cardiac structure and recurrence of atrial fibrillation. J Am Heart Assoc. 2013; 2 (6): e000421. DOI: https://doi.org/10.1161/JAHA.113.000421

34. McEvoy R.D., Antic N.A., Heeley E., et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016; 375 (10): 919–31. DOI: https://doi.org/10.1056/NEJMoa1606599

34. Gorbunova M.V., Babak S.L., Borovitsky V.S., Maliavin A.G. Effect of long-term CPAP therapy on metabolic profile of patients with mild obstructive sleep apnea. Farmateka [Pharmateca]. 2021; 28 (5): 81–6. (in Russian)

35. Iftikhar I.H., Khan M.F., Das A., Magalang U.J. Meta-analysis: Continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann Am Thorac Soc. 2013; 10 (2): 115–20. DOI: https://doi.org/10.1513/AnnalsATS.201209-081OC

36. Iftikhar I.H., Hoyos C.M., Phillips C.L., Magalang U.J. Meta-analyses of the association of sleep apnea with insulin resistance, and the effects of CPAP on HOMA-IR, adiponectin, and visceral adipose fat. J Clin Sleep Med. 2015; 11 (4): 475–85. DOI: https://doi.org/10.5664/jcsm.4610

37. Radovanovic D., Rizzi M., Airoldi A., et al. Effect of continuous positive airway pressure on respiratory drive in patients with obstructive sleep apnea. Sleep Med. 2019; 64: 3–11. DOI: https://doi.org/10.1016/j.sleep.2019.05.019

38. Lui M.M.S., Mak J.C.W., Chong P.W.C., Lam D.C.L., Ip M.S.M. Circulating adipocyte fatty acid-binding protein is reduced by continuous positive airway pressure treatment for obstructive sleep apnea: A randomized controlled study. Sleep Breath. 2020; 24 (3): 817–24. DOI: https://doi.org/10.1007/s11325-019-01893-5

39. Pamidi S., Wroblewski K., Stepien M., et al. Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. A randomized controlled trial. Am J Respir Crit Care Med. 2015; 192 (1): 96–105. DOI: https://doi.org/10.1164/rccm.201408-1564OC

40. Weinstock T.G., Wang X., Rueschman M., et al. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep. 2012; 35 (5): 617–25. DOI: https://doi.org/10.5665/sleep.1816

41. Gorbunova M.V., Babak S.L., Maliavin A.G. Long-term compliance with CPAP therapy in patients with obstructive sleep apnea and hypertension. Farmateka [Pharmateka]. 2019; 26 (5): 85–91. (in Russian)

42. Chaplin H., Ward K. How many hours per night is enough? A systematic integrative review to identify optimal hours of CPAP therapy use for sleep apnoea. Health Sci Rev. 2022; 5: 100061. DOI: https://doi.org/10.1016/j.hsr.2022.100061

43. Chami H.A., Gottlieb D.J., Redline S., Punjabi N.M. Association between glucose metabolism and sleep-disordered breathing during REM sleep. Am J Respir Crit Care Med. 2015; 192 (9): 1118–26. DOI: https://doi.org/10.1164/rccm.201501-0046OC

44. Schwartz A.R., Bennett M.L., Smith P.L., et al. Therapeutic electrical stimulation of the hypoglossal nerve in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2001; 127 (10): 1216–23. DOI: https://doi.org/10.1001/archotol.127.10.1216

45. Venkataraman S., Vungarala S., Covassin N., Somers V.K. Sleep apnea, hypertension and the sympathetic nervous system in the adult population. J Clin Med. 2020; 9 (2): 591. DOI: https://doi.org/10.3390/jcm9020591

46. Warchol-Celinska E., Prejbisz A., Kadziela J., et al. Renal denervation in resistant hypertension and obstructive sleep apnea: Randomized proof-of-concept phase II trial. Hypertension. 2018; 72 (2): 381–90. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.118.11180

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»