To the content
1 . 2023

Curcumin, the gold nutraceutical: various protection against diseases of civilization

Abstract

Curcumin is a natural polyphenolic component of the Curcuma longa plant. For pharmacology, its anti-inflammatory and antioxidant properties are of particular value. Curcumin has a significant number of molecular targets, such as transcription factors and their receptors, cytokines, genes, growth factors and adhesion molecules, which makes it possible to successfully use it in the complex therapy of any diseases based on chronic low-level inflammation: atherosclerosis, metabolic syndrome, prevention of complications of diabetes mellitus, bronchial asthma, chronic pancreatitis and many others. Unlike many nutraceuticals, curcumin has a strong evidence base and a well-studied mechanism of action, in addition, the micellar forms available today make it possible to overcome the barrier of low bioavailability of native compound. Like all nutraceuticals, curcumin has a mild and multidirectional effect and, in most cases, should be used as an adjunct to the basic therapy of the underlying disease.

Keywords:curcumin; chronic inflammation; oxidative stress; inflammatory signaling pathways; anti-inflammatory effect; curcumin micelles

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Pashkova E.Yu., Antsiferova D.M. Curcumin, the gold nutraceutical: various protection against diseases of civilization. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2023; 12 (1): 66–74. DOI: https://doi.org/10.33029/2304-9529-2023-12-1-66-74 (in Russian)

References

1. Al-Samydai A., Jaber N. Pharmacological aspects of curcumin: review article. J Pharmacognosy. 2018; 5 (6): 313–26. DOI: https://doi.org/10.13040/IJPSR.0975-8232.IJP.5(6).313-326.

2. Bengmark S. Curcumin, an atoxic antioxidant and natural NFκB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: A shield against acute and chronic diseases. J Parenter Enteral Nutr. 2006; 30 (1): 45–51. DOI: https://doi.org/10.1177/014860710603000145

3. Wang S.L., Li Y., Wen Y.A., Chen Y.F., et al. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomed Environ Sci. 2009; 22 (1): 32–9. DOI: https://doi.org/10.1016/S-0895-3988(09)60019-2

4. Gupta S.C., Patchva S., Koh W., Aggarwal B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012; 39 (3): 283–99. DOI: https://doi.org/10.1111/J.1440-1681.2011.05648.X

5. Jurenka J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009; 14 (2): 141–53.

6. Wang Y.J., Pan M.H., Cheng A.L., et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997; 15 (12): 1867–76. DOI: https://doi.org/10.1016/S-0731-7085(96)02024-9

7. Kunnumakkara A.B., Bordoloi D., Padmavathi G., et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017; 174 (11): 1325–48. DOI: https://doi.org/10.1111/BPH.13621

8. Aggarwal B.B., Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009; 41(1): 40–59. DOI: https://doi.org/10.1016/J.BIOCEL.2008.06.010

9. Aggarwal B.B. Nuclear factor-κB: the enemy within. Cancer Cell. 2004; 6 (3): 203–8. DOI: https://doi.org/10.1016/J.CCR.2004.09.003

10. Li J., Sabliov C. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev. 2013; 2 (3): 241–57. DOI: https://doi.org/10.1515/NTREV-2012-0084

11. Aggarwal B.B., Shishodia S., Sandur S.K., Pandey M.K., Sethi G. Inflammation and cancer: how hot is the link? Elsevier. 2006; 72 (11): 1605–21. DOI: https://doi.org/10.1016/j.bcp.2006.06.029

12. Guo Y.Z., He P., Feng A.M. Effect of curcumin on expressions of NF-κBp65, TNF-α and IL-8 in placental tissue of premature birth of infected mice. Asian Pac J Trop Med. 2017; 10 (2): 175–8. DOI: https://doi.org/10.1016/J.APJTM.2017.01.004

13. Becher B., Spath S., Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017; 17 (1): 49–59. DOI: https://doi.org/10.1038/NRI.2016.123

14. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35. DOI: https://doi.org/10.1038/NATURE 07201.

15. Medzhitov R. Inflammation 2010: New adventures of an old flame. Cell. 2010; 140 (6): 771–6. DOI: https://doi.org/10.1016/J.CELL.2010.03.006.

16. Peng Y., Ao M., Dong B., Jiang Y., et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. 2021; 15: 4503–25. DOI: https://doi.org/10.2147/DDDT.S-327378

17. Zhang J., Zheng Y., Luo Y., Du Y., et al. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR 4/NF-κB pathways in BV2 cells. Mol Immunol. 2019; 116: 29–37. DOI: https://doi.org/10.1016/j.molimm.2019.09.020

18. Gao Y.Y., Zhuang Z., Lu Y., Tao T., et al. Curcumin mitigates neuro-inflammation by modulating microglia polarization through inhibiting TLR 4 axis signaling pathway following experimental subarachnoid hemorrhage. Front Neurosci. 2019; 13. DOI: https://doi.org/10.3389/FNINS.2019.01223

19. Rahimifard M., Maqbool F., Moeini-Nodeh S., Niaz K., et al. Targeting the TLR 4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017; 36: 11–9. DOI: https://doi.org/10.1016/j.arr.2017.02.004

20. Li Q., Sun J., Mohammadtursun N., Wu J., et al. Curcumin inhibits cigarette smoke-induced inflammation: Via modulating the PPARγ-NF-κB signaling pathway. Food Funct. 2019; 10 (12): 7983–94. DOI: https://doi.org/10.1039/C9FO02159K

21. Zhu T., Chen Z., Chen G., Wang D., et al. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPARγ-dependent NF-κB signaling pathway in vivo and in vitro. Mediators Inflamm. 2019; 2019. DOI: https://doi.org/10.1155/2019/4927430

22. Ashrafizadeh M., Rafiei H., Mohammadinejad R., Afshar E.G., et al. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother Res. 2020; 34 (8): 1745–60. DOI: https://doi.org/10.1002/PTR.6642

23. Kahkhaie K.R., Mirhosseini A., Aliabadi A., Mohammadi A., et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019; 27 (5): 885–900. DOI: https://doi.org/10.1007/s10787-019-00607-3

24. Chen G., Liu S., Pan R., et al. Curcumin attenuates gp120-induced microglial inflammation by inhibiting autophagy via the PI3K pathway. Cell Mol Neurobiol. 2018; 38 (8): 1465–77. DOI: https://doi.org/10.1007/s10571-018-0616-3

25. Chowdhury I., Banerjee S., Driss A., Xu W., et al. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-κB signaling pathway. J Cell Physiol. 2019; 234 (5): 6298–312. DOI: https://doi.org/10.1002/jcp.27360

26. Meng Z., Yan C., Deng Q., Gao D.F., Niu X.L. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR 4-MAPK/NF-κB pathways. Acta Pharmacol Sin. 2013; 34 (7): 901–11. DOI: https://doi.org/10.1038/APS.2013.24

27. Sadeghi A., Rostamirad A., Seyyedebrahimi S., et al. Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production. Inflammopharmacol. 2018; 26: 1265–72. DOI: https://doi.org/10.1007/s10787-018-0466-0

28. Zeng Z., Zhan L., Liao H., Chen L., Lv X. Curcumin improves TNBS-induced colitis in rats by inhibiting IL-27 expression via the TLR 4/NF-κB signaling pathway. Planta Med. 2013; 79 (2): 102–9. DOI: https://doi.org/10.1055/S-0032-1328057

29. Fu Y., Gao R., Cao Y., et al. Curcumin attenuates inflammatory responses by suppressing TLR 4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2014; 20 (1): 54–8. DOI: https://doi.org/10.1016/J.INTIMP.2014.01.024

30. Alizadeh F., Javadi M., Karami A.A., Gholaminejad F., et al. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phytother Res. 2018; 32 (3): 514–21. DOI: https://doi.org/10.1002/ptr.5998

31. Atabaki M., Shariati-Sarabi Z., Tavakkol-Afshari J., Mohammadi M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol. 2020; 85. DOI: https://doi.org/10.1016/J.INTIMP.2020.106607

32. Rahimi K., Ahmadi A., Hassanzadeh K., et al. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev. 2019; 18 (7): 738–48. DOI: https://doi.org/10.1016/J.AUTREV.2019.05.012

33. Momtazi-Borojeni A.A., Haftcheshmeh S.M., Esmaeili S.A., Johnston T.P., et al. Curcumin: a natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev. 2018; 17(2): 125–35. DOI: https://doi.org/10.1016/J.AUTREV.2017.11.016

34. Zhang W., Liu X., Zhu Y., Liu X., et al. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol. 2021; 51 (9): 2137–50. DOI: https://doi.org/10.1002/eji.202048794

35. Chang Y., Zhai L., Peng J., Wu H., et al. Phytochemicals as regulators of Th17/Treg balance in inflammatory bowel diseases. Biomed Pharmacother. 2021; 141: 111931. DOI: https://doi.org/10.1016/j.biopha.2021.111931

36. Wei C., Wang J.Y., Xiong F., Wu B.H., et al. Curcumin ameliorates DSS-induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol Med Rep. 2021: 23 (1): 34. DOI: https://doi.org/10.3892/mmr.2020.11672

37. Disilvestro R.A., Joseph E., Zhao S., Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012; 11 (1). DOI: https://doi.org/10.1186/1475-2891-11-79

38. Mohammadi A., Sahebkar A., Iranshahi M., et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res. 2013; 27 (3): 374–9. DOI: https://doi.org/10.1002/PTR.4715

39. Wongcharoen W., Jai-Aue S., Phrommintikul A., et al. Effects of curcuminoids on frequency of acute myocardial infarction after coronary artery bypass grafting. Am J Cardiol. 2012; 110 (1): 40–4. DOI: https://doi.org/10.1016/j.amjcard.2012.02.043

40. Panahi Y., Sahebkar A., Parvin S., Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49 (Pt 6): 580–8. DOI: https://doi.org/10.1258/acb.2012.012040

41. Chainani-Wu N., Madden E., Lozada-Nur F., Silverman S. High-dose curcuminoids are efficacious in the reduction in symptoms and signs of oral lichen planus. J Am Acad Dermatol. 2012; 66 (5): 752–60. DOI: https://doi.org/10.1016/J.JAAD.2011.04.022

42. Belcaro G., Cesarone M., Dugall M., et al. Product-evaluation registry of Meriva®, a curcumin-phosphatidylcholine complex, for the complementary management of osteoarthritis. Panminerva Med. 2010; 52 (2 Suppl 1): 55–62.

43. Panahi Y., Saadat A., Beiraghdar F., Hosseini Nouzari S.M., et al. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: A randomized double-blind placebo-controlled trial. J Funct Foods. 2014; 6 (1): 615–22. DOI: https://doi.org/10.1016/J.JFF.2013.12.008

44. Rahimnia A.R., Panahi Y., Alishiri G., Sharafi M., Sahebkar A. Impact of supplementation with curcuminoids on systemic inflammation in patients with knee osteoarthritis: Findings from a randomized double-blind placebo-controlled trial. Drug Res. 2014; 65 (10): 521–5. DOI: https://doi.org/10.1055/S-0034-1384536

45. Panahi Y., Hosseini M.S., Khalili N., Naimi E., et al. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 2015; 34 (6): 1101–8. DOI: https://doi.org/10.1016/j.clnu.2014.12.019

46. Usharani P., Mateen A.A., Naidu M.U.R., Raju Y.S.N., Chandra N. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus: a randomized, parallel-group, placebo-controlled, 8-week study. Drugs R D. 2008; 9 (4): 243–50. DOI: https://doi.org/10.2165/00126839-200809040-00004

47. Na L.X., Yan B.L., Jiang S., Cui H.L., et al. Curcuminoids Target decreasing serum adipocyte-fatty acid binding protein levels in their glucose-lowering effect in patients with type 2 diabetes. Biomed Environ Sci. 2014; 27 (11): 902–6. DOI: https://doi.org/10.3967/BES 2014.127

48. Yu J.J., Pei L.B., Zhang Y., Wen Z.Y, Yang J.L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder: A randomized, double-blind, placebo-controlled pilot study. J Clin Psychopharmacol. 2015; 35 (4): 406–10. DOI: https://doi.org/10.1097/JCP.0000000000000352

49. Ganjali S., Sahebkar A., Mahdipour E., et al. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. Scientific World Journal. 2014; 2014. DOI: https://doi.org/10.1155/2014/898361

50. Panahi Y., Hosseini M.S., Khalili N., et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016; 82: 578–82. DOI: https://doi.org/10.1016/j.biopha.2016.05.037

51. Khajehdehi P., Pakfetrat M., Javidnia K., et al. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: a randomized, double-blind and placebo-controlled study. Scand J Urol Nephrol. 2011; 45 (5): 365–70. DOI: https://doi.org/10.3109/00365599.2011.585622

52. Sahebkar A., Cicero A.F.G., Simental-Mendía L.E., Aggarwal B.B., Gupta S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016; 107: 234–42. DOI: https://doi.org/10.1016/j.phrs.2016.03.026

53. Derosa G., Maffioli P., Simental-Mendía L.E., Bo S., Sahebkar A.

Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016; 111: 394–404. DOI: https://doi.org/10.1016/J.PHRS.2016.07.004

54. Derochette S., Franck T., Mouithys-Mickalad A., et al. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem Biol Interact. 2013; 206 (2): 186–93. DOI: https://doi.org/10.1016/J.CBI.2013.09.011

55. Lin X., Bai D., Wei Z., Zhang Y., et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019; 14 (5): e0216711. DOI: https://doi.org/10.1371/journal.pone.0216711

56. Yousefian M., Shakour N., Hosseinzadeh H., Hayes A.W., et al. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine. 2019; 55: 200–13. DOI: https://doi.org/10.1016/j.phymed.2018.08.002

57. Bernstein C.N., Eliakim A., Fedail S., et al. World Gastroenterology Organisation Global Guidelines Inflammatory Bowel Disease: Update August 2015. J Clin Gastroenterol. 2016; 50(10): 803–18. DOI: https://doi.org/10.1097/MCG.0000000000000660

58. Levine A., Koletzko S., Turner D., et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014; 58 (6): 795–806. DOI: https://doi.org/10.1097/MPG.0000000000000239

59. Samaan M.A., Mosli M.H., Sandborn W.J., et al. A systematic review of the measurement of endoscopic healing in ulcerative colitis clinical trials: recommendations and implications for future research. Inflamm Bowel Dis. 2014; 20 (8): 1465–71. DOI: https://doi.org/10.1097/MIB.0000000000000046

60. Gearry R.B., Irving P.M., Barrett J.S., Nathan D.M., et al. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease-a pilot study. J Crohns Colitis. 2009; 3 (1): 8–14. DOI: https://doi.org/10.1016/J.CROHNS.2008.09.004

61. Mayberry J.F., Lobo A., Ford A.C., Thomas A. NICE clinical guideline (CG152): the management of Crohn’s disease in adults, children and young people. Aliment Pharmacol Ther. 2013; 37 (2): 195–203. DOI: https://doi.org/10.1111/APT.12102

62. Wedlake L., Slack N., Andreyev H.J.N., Whelan K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis. 2014; 20 (3): 576–86. DOI: https://doi.org/10.1097/01.MIB.0000437984.92565.31

63. Ford A.C., Khan K.J., Achkar J.P., Moayyedi P. Efficacy of oral vs. topical, or combined oral and topical 5-aminosalicylates, in Ulcerative Colitis: systematic review and meta-analysis. Am J Gastroenterol. 2012; 107 (2): 167–76. DOI: https://doi.org/10.1038/AJG.2011.410

64. Irving P.M., Gearry R.B., Sparrow M.P., Gibson P.R. Review article: appropriate use of corticosteroids in Crohn’s disease. Aliment Pharmacol Ther. 2007; 26 (3): 313–329. DOI: https://doi.org/10.1111/J.1365-2036.2007.03379.X

65. Greenberg G.R., Feagan B.G., Martin F., et al. Oral budesonide for active Crohn’s disease. Canadian Inflammatory Bowel Disease Study Group. N Engl J Med. 1994; 331 (13): 836–41. DOI: https://doi.org/10.1056/NEJM199409293311303

66. Valentino P.L., Church P.C., Shah P.S., et al. Hepatotoxicity caused by methotrexate therapy in children with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2014; 20 (1): 47–59. DOI: https://doi.org/10.1097/01.MIB.0000436953.88522.3E

67. Danese S., Fiorino G., Peyrin-Biroulet L., et al. Biological agents for moderately to severely active ulcerative colitis: a systematic review and network meta-analysis. Ann Intern Med. 2014; 160 (10): 704–11. DOI: https://doi.org/10.7326/M13-2403.

68. Bijlsma J.W., Berenbaum F., Lafeber F.P. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011; 377 (9783): 2115–26. DOI: https://doi.org/10.1016/S-0140-6736(11)60243-2

69. Glyn-Jones S., Palmer A.J.R., Agricola R., et al. Osteoarthritis. Lancet. 2015; 386 (9991): 376–87. DOI: https://doi.org/10.1016/S-0140-6736(14)60802-3

70. Seo E.J., Efferth T., Panossian A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. Phytomedicine. 2018; 50: 285–99. DOI: https://doi.org/10.1016/J.PHYMED.2018.09.202

71. Zhang Z., Leong D.J., Xu L., et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther. 2016; 18 (1). DOI: https://doi.org/10.1186/S-13075-016-1025-Y

72. Kang C., Jung E., Hyeon H., Seon S., Lee D. Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine. 2020; 23. DOI: https://doi.org/10.1016/J.NANO.2019.102104

73. Wang Q., Ye C., Sun S., et al. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int Immunopharmacol. 2019; 72: 292–300. DOI: https://doi.org/10.1016/J.INTIMP.2019.04.027

74. Wang J., Wang X., Cao Y., Huang T., et al. Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes. Int J Mol Med. 2018; 42 (5): 2604–14. DOI: https://doi.org/10.3892/IJMM.2018.3817

75. Yan D., He B., Guo J., Li S., Wang J. Involvement of TLR 4 in the protective effect of intra-articular administration of curcumin on rat experimental osteoarthritis. Acta Cir Bras. 2019; 34 (6). DOI: https://doi.org/10.1590/S 0102-865020190060000004

76. Mollazadeh H., Cicero A.F.G., Blesso C.N., Pirro M., et al. Immune modulation by curcumin: The role of interleukin-10. Crit Rev Food Sci Nutr. 2019; 59 (1): 89–101. DOI: https://doi.org/10.1080/10408398.2017.1358139

77. Panaro M.A., Corrado A., Benameur T., Paolo C.F., et al. The emerging role of curcumin in the modulation of TLR-4 signaling pathway: focus on neuroprotective and anti-rheumatic properties. Int J Mol Sci. 2020; 21 (7): 2299. DOI: https://doi.org/10.3390/ijms21072299

78. Zhang N., Liu Z., Luo H., et al. FM0807 decelerates experimental arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-κB and MAPK pathways. Biosci Rep. 2019; 39 (9). DOI: https://doi.org/10.1042/BSR 20182263

79. Yan F., Li H., Zhong Z., et al. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int J Nanomedicine. 2019; 14: 9113–25. DOI: https://doi.org/10.2147/IJN.S219413

80. Manca M.L., Lattuada D., Valenti D., et al. Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid. Eur J Pharm Biopharm. 2019; 136: 84–92. DOI: https://doi.org/10.1016/J.EJPB.2019.01.012.

81. Chen B., Li H., Ou G., Ren L., et al. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res Ther. 2019; 21 (1). DOI: https://doi.org/10.1186/S-13075-019-1974-Z

82. Li X., Xu D.Q., Sun D.Y., Zhang T., et al. Curcumin ameliorates monosodium urate-induced gouty arthritis through Nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling. J Cell Biochem. 2019; 120(4): 6718–28. DOI: https://doi.org/10.1002/JCB.27969

83. Krueger J.G., Brunner P.M. Interleukin-17 alters the biology of many cell types involved in the genesis of psoriasis, systemic inflammation and associated comorbidities. Exp Dermatol. 2018; 27 (2): 115–23. DOI: https://doi.org/10.1111/exd.13467

84. Glitzner E., Korosec A., Brunner P.M., et al. Specific roles for dendritic cell subsets during initiation and progression of psoriasis. EMBO Mol Med. 2014; 6 (10): 1312–27. DOI: https://doi.org/10.15252/EMMM.201404114

85. Armstrong A.W., Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA. 2020; 323 (19): 1945–60. DOI: https://doi.org/10.1001/jama.2020.4006

86. Skyvalidas D., Mavropoulos A., Tsiogkas S., et al. Curcumin mediates attenuation of pro-inflammatory interferon γ and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr Res. 2020; 75: 95–108. DOI: https://doi.org/10.1016/J.NUTRES.2020.01.005

87. Varma S.R., Sivaprakasam T.O., Mishra A., Prabhu S., et al. Imiquimod-induced psoriasis-like inflammation in differentiated Human keratinocytes: Its evaluation using curcumin. Eur J Pharmacol. 2017; 813: 33–41. DOI: https://doi.org/10.1016/j.ejphar.2017.07.040

88. Filippone A., Consoli G.M.L., Granata G., et al. Topical delivery of curcumin by choline-calix[4]arene-based nanohydrogel improves its therapeutic effect on a psoriasis mouse model. Int J Mol Sci. 2020; 21 (14): 1–15. DOI: https://doi.org/10.3390/IJMS21145053

89. McClements D.J., Li F., Xiao H. The nutraceutical bioavailability classification scheme: Classifying nutraceuticals according to factors limiting their oral bioavailability. Annu Rev Food Sci Technol. 2015; 6: 299–327. DOI: https://doi.org/10.1146/ANNUREV-FOOD-032814-014043

90. Prasad S., Tyagi A.K., Aggarwal B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res Treat. 2014; 46 (1): 2–18. DOI: https://doi.org/10.4143/CRT.2014.46.1.2

91. Fonseca-Santos B., Gremião M.P.D., Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine. 2015; 10: 4981–5003. DOI: https://doi.org/10.2147/IJN.S 87148

92. Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham, 2016. DOI: https://doi.org/10.1007/978-3-319-41129-3_2

93. Ghalandarlaki N., Alizadeh A.M., Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014; 2014. DOI: https://doi.org/10.1155/2014/394264

94. Aqil F., Munagala R., Jeyabalan J., Vadhanam M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013; 334 (1): 133–41. DOI: https://doi.org/10.1016/j.canlet.2013.02.032

95. Ma Z., Haddadi A., Molavi O., Lavasanifar A., et al. Micelles of poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A. 2008; 86 (2): 300–10. DOI: https://doi.org/10.1002/JBM.A.31584

96. Yu H., Li J., Shi K., Huang Q. Structure of modified ε-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids. Food Funct. 2011; 2 (7): 373–80. DOI: https://doi.org/10.1039/C1FO10053J

97. Podaralla S., Averineni R., Alqahtani M., Perumal O. Synthesis of novel biodegradable methoxy poly(ethylene glycol)-zein micelles for effective delivery of curcumin. Mol Pharm. 2012; 9 (9): 2778–86. DOI: https://doi.org/10.1021/MP2006455

98. Song Z., Feng R., Sun M., et al. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci. 2011; 354 (1): 116–23. DOI: https://doi.org/10.1016/j.jcis.2010.10.024

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»