To the content
2 . 2023

The role of magnetic resonance imaging in the implementation of a precision approach to the treatment of acromegaly

Abstract

The review discusses the topic of implementing a precision approach for differential diagnosis between the most common morphotypes of somatotropic tumors (ST) in patients with acromegaly. The predictive significance of the magnitude of the relative signal intensity (RSI) on T2-weighted MRI images (T2-WI) for the diagnosis of the pathomorphological variant of ST, determination of the biological scenario of tumor development and prediction of the biochemical and tumor response to primary or secondary drug therapy with 1st generation somatostatin analogues (SA1) is considered.

Modern methods for determining the intensity of the tumor signal on T2-WI are described, as well as practical applications of the integrated use of RSI for evaluating surgical and pharmacotherapeutic outcomes. It is shown that densely granulated ST differ in low signal intensity on T2-WI, small in size and a good response to traditional drug therapy, compared with hyperintense sparsely granulated tumors characterized by aggressive course and resistance to SA1.

The first domestic data on quantitative registration of RSI for T2-WI in patients with densely granulated and sparsely granulated STs, correlating with the receptor phenotype and the effectiveness of long-term drug therapy SA1. It is shown that the introduction into domestic local clinical practice of the digital radiological method for determining the RSI of a tumor on T2-WI will contribute to expanding the possibilities of diagnostic search and the implementation of a personalized approach to the treatment of patients with acromegaly syndrome.

Keywords:acromegaly; somatotropic tumors; T2-weighted MRI signal; drug therapy; somatostatin analogues

Funding. The study had no sponsor support.

Conflict of interest. The author declare no conflict of interest.

For citation: Pronin V.S., Antsiferov M.B., Vasiliev Yu.A., Petryaykin A.V., Alexeeva T.M., Pronin E.V., Khoruzhaya A.N., Tamaeva S.M. The role of magnetic resonance imaging in the implementation of a precision approach to the treatment of acromegaly. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2023; 12 (2): 78–94. DOI: https://doi.org/10.33029/2304-9529-2023-12-2-78-94 (in Russian)

References

1. Asa S.L., Ezzat S. An update on pituitary neuroendocrine tumors leading to acromegaly and gigantism. J Clin Med. 2021; 10 (11): 2254. DOI: https://doi.org/10.3390/jcm10112254

2. Tsukamoto T., Miki Y. Imaging of pituitary tumors: an update with the 5th WHO classifications – part 1. Pituitary neuroendocrine tumor (PitNET)/pituitary adenoma. Jpn J Radiol. 2023. Feb 24. DOI: https://doi.org/10.1007/s11604-023-01400-7

3. Nista F., Corica G., Castelletti L., et al. Clinical and radiological predictors of biochemical response to first-line treatment with somatostatin receptor ligands in acromegaly: a real-life perspective. Front Endocrinol (Lausanne). 2021; 12: 677919. DOI: https://doi.org/10.3389/fendo.2021.677919

4. Rosario P.W. Frequency of acromegaly in adults with diabetes or glucose intolerance and estimated prevalence in the general population. Pituitary. 2011; 14: 217–21. DOI: https://doi.org/10.1007/s11102-010-0281-0

5. Schneider H.J., Sievers C., Saller B., et al. High prevalence of biochemical acromegaly in primary care patients with elevated IGF-1 levels. Clin Endocrinol (Oxf). 2008; 69 (3): 432–5. DOI: https://doi.org/10.1111/j.1365-2265.2008.03221.x

6. Gadelha M.R., Kasuki L., Lim D.S.T., Fleseriu M. Systemic complications of acromegaly and the impact of the current treatment landscape: an update. Endocr Rev. 2019; 40 (1): 268–332. DOI: https://doi.org/10.1210/er.2018-00115

7. Giustina A., Barkhoudarian G., Beckers A., et al. Multidisciplinary management of acromegaly: a consensus. Rev Endocr Metab Disord. 2020; 21 (4): 667–78. DOI: https://doi.org/10.1007/s11154-020-09588-z

8. Fleseriu M., Barcan A., Del Pilar Schneider M., et al. Prevalence of comorbidities and concomitant medication use in acromegaly: analysis of real-world data from the United States. Pituitary. 2022; 25 (2): 296–307. DOI: https://doi.org/10.1007/s11102-021-01198-5

9. Lopes M.B.S. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 2017; 134 (4): 521–35. DOI: https://doi.org/10.1007/s00401-017-1769-8

10. Kontogeorgos G., Thodou E., Osamura R.Y., Lloyd R.V. High-risk pituitary adenomas and strategies for predicting response to treatment. Hormones (Athens). 2022; 21 (1): 1–14. DOI: https://doi.org/10.1007/s42000-021-00333-y

11. Akirov A., Asa S.L., Amer L., et al. The clinicopathological spectrum of acromegaly. J Clin Med. 2019; 8 (11): 1962. DOI: https://doi.org/10.3390/jcm8111962

12. Mete O., Lopes M.B. Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol. 2017; 28 (3): 228–43. DOI: https://doi.org/10.1007/s12022-017-9498-z

13. Rymuza J., Kober P., Rusetska N., et al. Transcriptomic classification of pituitary neuroendocrine tumors causing acromegaly. Cells. 2022; 11 (23): 3846. DOI: https://doi.org/10.3390/cells11233846

14. Akkus G., Odabaş F, Sözütok S., et al. Novel classification of acromegaly in accordance with immunohistochemical subtypes: is there really a clinical relevance? Horm Metab Res. 2022; 54: 37–41. DOI: https://doi.org/10.1055/a-1685-0655

15. Tomasik A., Stelmachowska-Banas M., Maksymowicz M., et al. Clinical, hormonal and pathomorphological markers of somatotroph pituitary neuroendocrine tumors predicting the treatment outcome in acromegaly. Front Endocrinol (Lausanne). 2022; 13: 957301. DOI: https://doi.org/10.3389/fendo.2022.957301

16. Liu C.-X., Wang S.-Z., Heng L.-J., et al. Predicting subtype of growth hormone pituitary adenoma based on magnetic resonance imaging characteristics. J Comput Assist Tomogr. 2022; 46 (1): 124–30. DOI: https://doi.org/10.1097/RCT.0000000000001249

17. Asa S.L., Kucharczyk W., Ezzat S. Pituitary acromegaly: not one disease. Endocr Relat Cancer. 2017; 24 (3): C 1–C 4. DOI: https://doi.org/10.1530/ERC-16-0496

18. Berton A.M., Prencipe N., Bertero L., et al. Resistance to somatostatin analogs in italian acromegaly patients: the MISS Study. J Clin Med. 2022; 12 (1): 25. DOI: https://doi.org/10.3390/jcm12010025

19. Puig-Domingo M., Gil J., Sampedro-Nuñez M., et al. Molecular profiling for acromegaly treatment: a validation study. Endocr Relat Cancer. 2020; 27: 375–89. DOI: https://doi.org/10.1530/ERC-18-0565

20. Bonneville F., Riviere L-D., Petersen S., et al. MRI T2 signal intensity and tumor response in patients with GH-secreting pituitary macroadenoma: PRIMARYS post-hoc analysis. Eur J Endocrinol. 2019; 180 (3): 155–64. DOI: https://doi.org/10.1530/EJE-18-0254

21. Gadelha M.R., Wildemberg L.E., Kasuki L. The future of somatostatin receptor ligands in acromegaly. J Clin Endocrinol Metab. 2022; 107 (2): 297–308. DOI: https://doi.org/10.1210/clinem/dgab726

22. Lim D.S.T., Freseriu M. Personalized medical treatment of patients with acromegaly: a review. Endocr Pract. 2022; 28 (3): 321–32. DOI: https://doi.org/10.1016/j.eprac.2021.12.017

23. Lewis D., Roncaroli F., Kearney T., et al. Quantitative magnetic resonance-derived biomarkers as predictors of function and histotype in adenohypophyseal tumours. Neuroendocrinology. 2022; 112: 276–86. DOI: https://doi.org/10.1159/000516823

24. Bashari W.A., Senanayake R., Fernández-Pombo A., et al. Modern imaging of pituitary adenomas. Best Pract Res Clin Endocrinol Metab. 2019; 33 (2): 101278. DOI: https://doi.org/10.1016/j.beem.2019.05.002

25. Gadelha M.R., Barbosa M.A., Lamback E.B., et al. Pituitary MRI standard and advanced sequences: role in the diagnosis and characterization of pituitary adenomas. J Clin Endocrinol Metab. 2022; 107 (5): 1431–40. DOI: https://doi.org/10.1210/clinem/dgab901

26. Potorac I., Petrossian P., Daly A.F., et al. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer. 2016; 23 (11): 871–81. DOI: https://doi.org/10.1530/ERC-16-0356

27. Anwar S.S.M., Hilal K., Khan A., Ahmad A. Magnetic resonance imaging grading of pituitary macroadenoma – SIPAP classification revisited. Eur J Radiol Open. 2023; 10: 100486. DOI: https://doi.org/10.1016/j.ejro.2023.100486

28. Gruppetta M. A current perspective of pituitary adenoma MRI characteristics: a review. Expert Rev Endocrinol Metab. 2022; 17 (6): 499–511. DOI: https://doi.org/10.1080/17446651.2022.2144230

29. Vidal S., Kovacs K., Horvath E., et al. Microvessel density in pituitary adenomas and carcinomas. Virchows Arch. 2001; 438: 595–602. DOI: https://doi.org/10.1007/s004280000373

30. Amano T., Masumoto T., Akutsu H., et al. The utility of dynamic MRI in differentiating the hormone-producing ability of pituitary adenomas. Jpn J Radiol. 2021; 39 (8): 741–8. DOI: https://doi.org/10.1007/s11604-021-01121-9

31. Alhambra-Expósito M.R., Ibáñez-Costa A., Moreno-Moreno P., et al. Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas. Sci Rep. 2018; 8 (1): 6173. DOI: https://doi.org/10.1038/s41598-018-24260-y

32. Scanteie C.-L., Leucuta D.-C., Ghervan C. The therapeutic response of somatotropinomas according to the T2-weighted signal intensity on the MRI. Med Pharm Rep. 2021; 94 (4): 425–33. DOI: https://doi.org/10.15386/mpr-1299

33. Fleseriu M., Biller B.M.K., Freda P.U., et al. A Pituitary Society update to acromegaly management guidelines. Pituitary. 2021; 24 (1): 1–13. DOI: https://doi.org/10.1007/s11102-020-01091-7

34. Ferres A., Reyes L., Di Somma A., et al. The prognostic-based approach in growth hormone-secreting pituitary neuroendocrine tumors (PitNET): tertiary reference center, single senior surgeon, and long-term follow-up. Cancers (Basel). 2022; 15 (1): 267. DOI: https://doi.org/10.3390/cancers15010267

35. Heck A., Ringstad G., Fougner S.L., et al. Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol. 2012; 77 (1): 72–8. DOI: https://doi.org/10.1111/j.1365-2265.2011.04286.x

36. Tortora F., Negro A., Grasso L.F.S., et al. Pituitary magnetic resonance imaging predictive role in the therapeutic response of growth hormone-secreting pituitary adenomas. Gland Surg. 2019; 8 (suppl 3): S 150–8. DOI: https://doi.org/10.21037/gs.2019.06.04

37. Shen M., Zhang Q., Liu W., et al. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology. 2016; 58 (11): 1057–65. DOI: https://doi.org/10.1007/s00234-016-1728-4

38. Potorac I., Petrossians P., Daly A.F., et al. Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer. 2015; 22: 169–77. DOI: https://doi.org/10.1530/ERC-14-0305

39. Yiping L., Ji X., Daoying G., Bo Y. Prediction of the consistency of pituitary adenoma: a comparative study on diffusion-weighted imaging and pathological results. J Neuroradiol. 2016; 43 (3): 186–94. DOI: https://doi.org/10.1016/j.neurad.2015.09.003

40. Park Y.W., Kang Y., Ahn S.S., et al. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary. 2020; 23 (6): 691–700. DOI: https://doi.org/10.1007/s11102-020-01077-5

41. Puig-Domingo M., Resmini E., Gomez-Anson B., et al. Magnetic resonance imaging as a predictor of response to somatostatin analogs in acromegaly after surgical failure. J Clin Endocrinol Metab. 2010; 95 (11): 4973–8. DOI: https://doi.org/10.1210/jc.2010-0573

42. Coopmans E.C., Korevaar T.I.M., van Meyel S.W.F., et al. Multivariable prediction model for biochemical response to first-generation somatostatin receptor ligands in acromegaly. J Clin Endocrinol Metab. 2020; 105 (9): 2964–74. DOI: https://doi.org/10.1210/clinem/dgaa387

43. Dogansen S.C., Yalin G.Y., Tanrikulu S., et al. Clinicopathological significance of baseline T2-weighted signal intensity in functional pituitary adenomas. Pituitary. 2018; 21 (4): 347–54. DOI: https://doi.org/10.1007/s11102-018-0877-3

44. Panteleeva E.S., Ilovayskaya I.A., Stashuk G.A., Dreval’ A.V. Correlation of morphological and functional characteristics of growth hormone-producing pituitary adenomas. Problemy endokrinologii [Problems of Endocrinology]. 2016; 62 (5): 60–1. DOI: https://doi.org/10.14341/probl201662560-61 (in Russian)

45. Pangal D.J., Wishart D., Shiroishi M.S., et al. Growth hormone secreting pituitary adenomas show distinct extrasellar extension patterns compared to nonfunctional pituitary adenomas. Pituitary. 2022; 25 (3): 480–5. DOI: https://doi.org/10.1007/s11102-022-01217-z

46. Heck A., Emblem K.E., Casar-Borota O., et al. Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine. 2016; 52 (2): 333–43. DOI: https://doi.org/10.1007/s12020-015-0766-8

47. Lu L., Wan X., Xu Y., et al. Prognostic factors for recurrence in pituitary adenomas: recent progress and future directions. Diagnostics (Basel). 2022; 12 (4): 977. DOI: https://doi.org/10.3390/diagnostics12040977

48. Lu L., Wan X., Xu Y., et al. Development and validation of a prognostic model for post-operative recurrence of pituitary adenomas. Front Oncol. 2022; 12: 882049. DOI: https://doi.org/10.3389/fonc.2022.882049

49. Cuocolo R., Ugga L., Solari D., et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology. 2020; 62 (12): 1649–56. DOI: https://doi.org/10.1007/s00234-020-02502-z

50. Akkaya E., Akgun M.Y., Sebnem Durmaz E., et al. T2-weighted magnetic resonance imaging as a novel predictor of surgical remission in newly diagnosed pituitary macroadenomas presenting as acromegaly. J Clin Neurosci. 2021; 90: 105–11. DOI: https://doi.org/10.1016/j.jocn.2021.05.058

51. Angelousi A., Koumarianou A., Chatzellis E., Kaltsas G. Resistance of neuroendocrine tumors to somatostatin analogs. Expert Rev Endocrinol Metab. 2023; 18 (1): 33–52. DOI: https://doi.org/10.1080/17446651.2023.2166488

52. Gadelha M.R., Bronstein M.D., Brue T., et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2014; 2 (11): 875–84. DOI: https://doi.org/10.1016/S-2213-8587(14)70169-X

53. Chiloiro S., Costa D., Lauretta R., et al. Partial response to first generation SSA guides the choice and predict the outcome of second line therapy in acromegaly. Endocrine. 2022; 78 (2): 343–53. DOI: https://doi.org/10.1007/s12020-022-03158-w

54. Antsiferov M.B., Petryaykin A.V., Alekseeva T.M., et al. Modern possibilities of tumor-oriented diagnostics and treatment of acromegaly. Farmateka [Pharmateca]. 2023; 30 (3): 78–88. DOI: https://doi.org/10.18565/pharmateca.2023.3.78-88 (in Russian)

55. Ku C.R., Melnikov V., Zhang Z., Lee E.J. Precision therapy in acromegaly caused by pituitary tumors: how close is it to reality? Endocrinol Metab (Seoul). 2020; 35 (2): 206–16. DOI: https://doi.org/10.3803/EnM.2020.35.2.206

56. Puig-Domingo M., Bernabeu I., Pico A., et al. Pasireotide in the personalized treatment of acromegaly. Front Endocrinol (Lausanne). 2021; 12: 648411. DOI: https://doi.org/10.3389/fendo.2021.648411

57. Coopmans E.C., Schneiders J.J., El-Sayed N., et al. T2-signal intensity, SSTR expression, and somatostatin analogs efficacy predict response to pasireotide in acromegaly. Eur J Endocrinol. 2020; 182 (6): 595–605. DOI: https://doi.org/10.1530/EJE-19-0840

58. Durmus E.T., Atmaca A., Kefeli M., et al. Age, GH/IGF-1 levels, tumor volume, T2 hypointensity, and tumor subtype rather than proliferation and invasion are all reliable predictors of biochemical response to somatostatin analogue therapy in patients with acromegaly: a clinicopathological study. Growth Horm IGF Res. 2022; 67: 101502. DOI: https://doi.org/10.1016/j.ghir.2022.101502

59. Ezzat S., Caspar-Bell G.M., Chik C.L., et al. Predictive markers for postsurgical medical management of acromegaly: a systematic review and consensus treatment guideline. Endocr Pract. 2019; 25 (4): 379–93. DOI: https://doi.org/10.4158/EP-2018-0500

60. Fan Y., Hua M., Mou A., et al. Preoperative noninvasive radiomics approach predicts tumor consistency in patients with acromegaly: development and multicenter prospective validation. Front Endocrinol (Lausanne). 2019; 10: 403. DOI: https://doi.org/10.3389/fendo.2019.00403

61. Kocak B., Durmaz E.S., Kadioglu P., et al. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol. 2019; 29: 2731–9. DOI: https://doi.org/10.1007/s00330-018-5876-2

62. Peng A., Dai H., Duan H., et al. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging. Eur J Radiol. 2020; 125: 108892. DOI: https://doi.org/10.1016/j.ejrad.2020.108892

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»