To the content
4 . 2023

Type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular complications: what do they have in common?

Abstract

In clinical practice, doctors often meet with patients with non-alcoholic fatty liver disease in combination with type 2 diabetes mellitus and cardiovascular diseases. The mechanisms of their coexistence are not fully understood. Given that both diseases and their complications are epidemic in nature and significantly affect the duration and quality of life, this review discusses the general pathophysiological parallels of these coexisting metabolic diseases.

A number of studies indicate that taurine has an effective effect in reducing total cholesterol, low- and very low-density lipoprotein cholesterol, triglycerides, insulin resistance, and has a significant cardioprotective effect. This review summarizes clinical trial data on the beneficial effects of taurine on obesity, dyslipidemia, diabetes mellitus, non-alcoholic fatty liver disease, coronary heart disease, arterial hypertension, chronic heart failure, and also examines the possible metabolic and molecular mechanisms of taurine in the prevention of metabolic syndrome.

Keywords:type 2 diabetes mellitus; nonalcoholic fatty liver disease; cardiovascular diseases; taurine

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Ametov A.S., Turkina S.V. Type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular complications: what do they have in common? Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2023; 12 (4): 87–98. DOI: https://doi.org/10.33029/2304-9529-2023-12-4-87-98 (in Russian)

References

1. Younossi Z.M., Golabi P., Paik J.M., et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023; 77 (4): 1335–47. DOI: https://doi.org/10.1097/HEP.0000000000000004

2. Lazebnik L.B., Golovanova E.V., Turkina S.V., et al. Non-alcoholic fatty liver disease in adults: clinic, diagnostics, treatment. Guidelines for therapists, third version. Eksperimental’naya i klinicheskaya gastoenterologiya [Experimental and Clinical Gastroenterology]. 2021; 185 (1): 4–52. DOI: https://doi.org/10.31146/1682–8658-ecg-185-1-4-52 (in Russian)

3. Eslam M., Newsome P.N., Sarin S.K., et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statemen. J Hepatol. 2020; 73: 202–9. DOI: https://doi.org/10.1016/j.jhep.2020.03.039

4. Statsenko M.E., Turkina S.V., Kosivtsova M.A., Tyshchenko I.A. Non-alcoholic fatty liver disease as a multisystem disease. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta [Bulletin of the Volgograd State Medical University]. 2016; 13 (2): 8–14. (in Russian)

5. Lonardo A., Mantovani A., Lugari S., Targher G. Epidemiology and pathophysiology of the association between NAFLD and metabolically healthy or metabolically unhealthy obesity. Ann Hepatol. 2020; 19: 359–66. DOI: https://doi.org/10.1016/j.aohep.2020.03.001

6. Younossi Z.M., Golabi P., de Avila L., et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019; 71: 793–801. DOI: https://doi.org/10.1016/j.jhep.2019.06.021

7. Mantovani A., Petracca G., Beatrice G., et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501 022 adult individuals. Gut. 2021; 70: 962–9. DOI: https://doi.org/10.1136/gutjnl-2020-322572

8. Kiapidou S., Liava C., Kalogirou M., et al. chronic kidney disease in patients with non-alcoholic fatty liver disease: what the hepatologist should know? Ann Hepatol. 2020; 19 (2): 134–44. DOI: https://doi.org/10.1016/j.aohep.2019.07.013

9. Mantovani A., Petracca G., Beatrice G., et al. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: a meta-analysis of observational cohort studies. Gut. 2022; 71 (4): 778–88. DOI: https://doi.org/10.1136/gutjnl-2021-324191

10. Duell P.B., Welty F.K., Miller M., et al.; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Hypertension; Council on the Kidney in Cardiovascular Disease; Council on Lifestyle and Cardiometabolic Health; and Council on Peripheral Vascular Disease. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022; 42 (6): 168–85. DOI: https://doi.org/10.1161/ATV.0000000000000153

11. Vilar-Gomez E., Calzadilla-Bertot L., Wai-Sun Wong V. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology. 2018; 155: 443–57.e17. DOI: https://doi.org/10.1053/j.gastro.2018.04.034

12. Schonmann Y., Yeshua H., Bentov I., Zelber-Sagi S. Liver fibrosis marker is an independent predictor of cardiovascular morbidity and mortality in the general population. Dig Liver Dis. 2021; 53: 79–85. DOI: https://doi.org/10.1016/j.dld.2020.10.014

13. Lee S.R., Han K.D., Choi E.K., Oh S., Lip G. Nonalcoholic fatty liver disease and the risk of atrial fibrillation stratified by body mass index: a nationwide population-based study. Sci Rep. 2021; 11: 3737. DOI: https://doi.org/10.1038/s41598-021-83367-x

14. Saokaew S., Kanchanasurakit S., Thawichai K., et al. Association of non-alcoholic fatty liver disease and all-cause mortality in hospitalized cardiovascular disease patients: a systematic review and meta-analysis. Medicine (Baltimore). 2021; 100: e24557. DOI: https://doi.org/10.1097/MD.0000000000024557

15. Dal Canto E., Ceriello A., Rydén L., et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019; 26 (2 suppl): 25–32. DOI: https://doi.org/10.1177/204748731987837

16. Ichikawa K., Miyoshi T., Osawa K., et al. Prognostic value of non-alcoholic fatty liver disease for predicting cardiovascular events in patients with diabetes mellitus with suspected coronary artery disease: a prospective cohort study. Cardiovasc Diabetol. 2021; 20: 8. DOI: https://doi.org/10.1186/s12933-020-01192-4

17. Chun H.S., Lee J.S., Lee H.W., et al. Association between the severity of liver fibrosis and cardiovascular outcomes in patients with type 2 diabetes. J Gastroenterol Hepatol. 2021; 36 (6): 1703–13. DOI: https://doi.org/10.1111/jgh.15387

18. Fan N., Ding X., Zhen Q., et al. Association of the Non-Alcoholic Fatty Liver Disease Fibrosis Score with subclinical myocardial remodeling in patients with type 2 diabetes: a cross-sectional study in China. J Diabetes Investig. 2021; 12 (6): 1035–41. DOI: https://doi.org/10.1111/jdi.13430

19. Zhou Y.Y., Zhou X.D., Wu S.J., et al. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol. 2018; 30 (6): 631–6. DOI: https://doi.org/10.1097/MEG.0000000000001075

20. Dharmalingam M., Yamasandhi P.G. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocrinol Metab. 2018; 22 (3): 421–8. DOI: https://doi.org/10.4103/ijem.IJEM_585_17

21. Targher G., Lonardo A., Byrne C.D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018; 14 (2): 99–114. DOI: https://doi.org/10.1038/nrendo.2017.173

22. Ix J.H., Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. J Am Soc Nephrol. 2010; 21 (3): 406–12. DOI: https://doi.org/10.1681/ASN.2009080820

23. Perdomo C.M., Garcia-Fernandez N., Escalada J. Diabetic kidney disease, cardiovascular disease and non-alcoholic fatty liver disease: a new triumvirate? J Clin Med. 2021; 10 (9): 2040. DOI: https://doi.org/10.3390/jcm10092040

24. Byrne C.D., Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol. 2020; 72: 785–801. DOI: https://doi.org/10.1016/j.jhep.2020.01.013

25. Budd J., Cusi K. Nonalcoholic fatty liver disease: what does the primary care physician need to know? Am J Med. 2020; 133: 536–43. DOI: https://doi.org/10.1016/j.amjmed.2020.01.007

26. Park H., Dawwas G.K., Liu X., Nguyen M.H. Nonalcoholic fatty liver disease increases risk of incident advanced chronic kidney disease: a propensity-matched cohort study. J Intern Med. 2019; 286: 711–22. DOI: https://doi.org/10.1111/joim.12964

27. Chiriac S., Stanciu C., Girleanu I., et al. Nonalcoholic fatty liver disease and cardiovascular diseases: the heart of the matter. Can J Gastroenterol Hepatol. 2021; 2021: 6696857. DOI: https://doi.org/10.1155/2021/6696857

28. Dewidar B., Kahl S., Pafili K., Roden M. Metabolic liver disease in diabetes – from mechanisms to clinical trials. Metabolism. 2020; 111S: 154299. DOI: https://doi.org/10.1016/j.metabol.2020.154299

29. Tilg H., Adolph T.E., Moschen A.R. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade. Hepatology. 2021; 73 (2): 833–42. DOI: https://doi.org/10.1002/hep.31518

30. Gehrke N., Schattenberg J.M. Metabolic Inflammation – a role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology. 2020; 158 (7): 1929–47.e6. DOI: https://doi.org/10.1053/j.gastro.2020.02.020

31. Zhou X.D., Targher G., Byrne C.D., et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int. 2023; 17 (4): 773–91. DOI: https://doi.org/10.1007/s12072-023-10543-8

32. Petroni M.L., Brodosi L., Bugianesi E., Marchesini G. Management of non-alcoholic fatty liver disease. BMJ. 2021; 372: 4747. DOI: https://doi.org/10.1136/bmj.m4747 PMID: 33461969.

33. von Loeffelholz C., Roth J., Coldewey S.M., Birkenfeld A.L. The role of physical activity in nonalcoholic and metabolic dysfunction associated fatty liver disease. Biomedicines. 2021; 9 (12): 1853. DOI: https://doi.org/10.3390/biomedicines9121853

34. Moon J.S., Hong J.H., Jung Y.J., et al. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2022; 33 (6): 424–42. DOI: https://doi.org/10.1016/j.tem.2022.03.005

35. Yan J., Yao B., Kuang H. Liraglutide, sitagliptin, and insulin glargine added to metformin: the effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Hepatology. 2019; 69 (6): 2414–26. DOI: https://doi.org/10.1002/hep.30320

36. Bethel M.A., Patel R.A., Merrill P., et al.; EXSCEL Study Group. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018; 6 (2): 105–13. DOI: https://doi.org/10.1016/S2213-8587(17)30412-6

37. Kristensen S.L., Rorth R., Jhund P.S., et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019; 7 (10): 776–85. DOI: https://doi.org/10.1016/S2213-8587(19)30249-9

38. Piccini S., Favacchio G., Panico C., et al. Time-dependent effect of GLP-1 receptor agonists on cardiovascular benefits: a real-world study. Cardiovasc Diabetol. 2023; 22: 69. DOI: https://doi.org/10.1186/s12933-023-01800-z

39. Newsome P.N., Buchholtz K., Cusi K., et al.; NN 9931-4296 Investigators. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021; 384 (12): 1113–24. DOI: https://doi.org/10.1056/NEJMoa2028395

40. Mantovani A., Petracca G., Beatrice G., et al. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites. 2021; 11 (2): 73. DOI: https://doi.org/10.3390/metabo11020073

41. Zelniker T.A., Braunwald E. Clinical benefit of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75 (4): 435–47. DOI: https://doi.org/10.1016/j.jacc.2019.11.036

42. Zelniker T.A., Wiviott S.D., Raz I. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019; 139 (17): 2022–31. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.038868

43. Lai L.L., Vethakkan S.R., Nik Mustapha N.R., Mahadeva S., Chan W.K. Empagliflozin for the treatment of nonalcoholic steatohepatitis in patients with type 2 diabetes mellitus. Dig Dis Sci. 2020; 65 (2): 623–31. DOI: https://doi.org/10.1007/s10620-019-5477-1

44. Portillo-Sanchez P., Bril F., et al. Effect of pioglitazone on bone mineral density in patients with nonalcoholic steatohepatitis: a 36-month clinical trial. J Diabetes. 2019; 11 (3): 223–31. DOI: https://doi.org/10.1111/1753-0407.12833

45. Fatima K., Moeed A., Waqar E., et al. Efficacy of statins in treatment and development of non-alcoholic fatty liver disease and steatohepatitis: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2022; 46 (4): 101816. DOI: https://doi.org/10.1016/j.clinre.2021.101816

46. Khoo S., Wong V.W., Goh G.B., Fan J., Chan W.K., Seto W.K., et al. Suboptimal treatment of dyslipidemia in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2020; 35 (2): 320–5. DOI: https://doi.org/10.1111/jgh.14794

47. Pastori D., Pani A., Di Rocco A., et al. Statin liver safety in non-alcoholic fatty liver disease: a systematic and meta-analysis. Br J Clin Pharmacol. 2022; 88 (2): 441–51. DOI: https://doi.org/10.1111/bcp.14943

48. Hoogwerf B.J. Statins may increase diabetes but benefit still outweighs risk. Cleve Clin J Med. 2023; 90 (1): 53–62. DOI: https://doi.org/10.3949/ccjm.90a.22069 PMID: 36596598.

49. Yamori Y., Liu L., Ikeda K., Miura A., Mizushima S., Miki T., et al.; WHO-Cardiovascular Disease and Alimentary Comparison (CARDIAC) Study Group. Distribution of twenty-four-hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC study. Hypertens Res. 2001; 24 (4): 453–7. DOI: https://doi.org/10.1291/hypres.24.453

50. Zheng Y., Ceglarek U., Huang T., et al. Plasma taurine, diabetes genetic predisposition, and changes of insulin sensitivity in response to weight-loss diets. J Clin Endocrinol Metab. 2016; 101 (10): 3820–6. DOI: https://doi.org/10.1210/jc.2016-1760

51. Sagara M., Murakami S., Mizushima S., et al. Taurine in 24-h urine samples is inversely related to cardiovascular risks of middle-aged subjects in 50 populations of the world. Adv Exp Med Biol. 2015; 803: 623–36. DOI: https://doi.org/10.1007/978-3-319-15126-7_50

52. El Agouza I.M., El Gendy H.A., Taha K.H.H., Abd-Allah A.A., Ghaffar M.M., et al. Comparison between serum taurine and specific tumor markers for early detection and diagnosis of HCC in Egyptian patients. World J Adv Healthc Res. 2019; 3 (1): 99–106.

53. Rosa F.T., Freitas E.C., Deminice R., Jordao A.A., et al., Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014; 53: 823–30.

54. El Agouza I.M., Saad A.H., Mahfouz A.A., Hamdy K. Serum taurine level in relation to ophthalmoscopic examination as early marker for diabetic retinopathy. Clin Med Biochem. 2017; 3 (1): 124.

55. Agouza I.M., Taha A., Mahfouz A.A., et al. The possibility of using serum taurine level as an early marker to control complications of diabetic foot. J Diabetic Complications Med. 2017; 2: 116. DOI: https://doi.org/10.4172/2475-3211.1000116

56. Agouza I.E., Fouad R., Ahmed R., Sayed M.E., Menshawy A. Comparison between fibroscan and serum taurine for early diagnosis of liver fibrosis in Egyptian patients infected with HCV. Clin Med Biochem. 2017; 3: 127.

57. Guan L., Miao P. The effects of taurine supplementation on obesity, blood pressure and lipid profile: a meta-analysis of randomized controlled trials. Eur J Pharmacol. 2020; 885: 173533. DOI: https://doi.org/10.1016/j.ejphar.2020.173533

58. Tao X., Zhang Z., Yang Z., Rao B. The effects of taurine supplementation on diabetes mellitus in humans: a systematic review and meta-analysis. Food Chem (Oxf). 2022; 4: 100106. DOI: https://doi.org/10.1016/j.fochms.2022.100106

59. Maleky V., Alizadeh M., Esmaeili F., Mahdavi R. The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Amino Acids. 2020; 52 (6–7): 905–14. DOI: https://doi.org/10.1007/s00726-020-02859-8

60. Maleki V., Mahdavi R., Hajizadeh-Sharafabad F., Alizadeh M. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr. 2020; 12: 9. DOI: https://doi.org/10.1186/s13098-020-0518-7

61. Moludi J., Qaisar S.A., Kadhim M.M., Ahmadi Y., Davari M. Protective and therapeutic effectiveness of taurine supplementation plus low calorie diet on metabolic parameters and endothelial markers in patients with diabetes mellitus: a randomized, clinical trial. Nutr Metab. 2022; 19: 49. DOI: https://doi.org/10.1186/s12986-022-00684-2

62. Shestakova M.V., Chugunova L.A., Shamkhalova M. Sh. Experience of using Dibikor for type 2 diabetes. Sakharniy diabet [Diabetes Mellitus]. 2007; 10 (1): 30–1. DOI: https://doi.org/10.14341/2072-0351-5911 (in Russian)

63. Ametov A.S., Kochergina I.I., Elizarova E.P. Experience of using dibikor for type 2 diabetes mellitus. Problemy endokrinologii [Problems of Endocrinology]. 2007; 53 (4): 44–50. DOI: https://doi.org/10.14341/probl200753444-50 (in Russian)

64. Ametov A.S., Kochergina I.I. The use of Dibikor for type 2 diabetes mellitus and cardiovascular pathology. Effektivnaya farmakoterapiya. Endokrinologiya [Effective Pharmacotherapy. Endocrinology]. 2008; (2): 40–9. (in Russian)

65. Vorokhobina N.V., Kuznetsova A.V. The use of Dibikor® in patients with type 2 diabetes mellitus and metabolic syndrome. RMZh [Russian Medical Journal]. 2010; (30): 1816. (in Russian)

66. Bondar’ I.A., Shabel’nikova O. Yu., Alina A.R. Antioxidant Dibikor in the treatment of vascular complications of type 2 diabetes mellitus. Problemy endokrinologii [Problems of Endocrinology]. 2009; 55 (2): 41–5. (in Russian)

67. Zanozina O.V. Possibilities of correcting oxidative stress in patients with diabetes mellitus using dibicor. Farmateka [Pharmateca]. 2010; 16 (210): 51–4. (in Russian)

68. Kochergina I.I., Doskina E.V., Ametov A.S. Lantus and Dibikor in the treatment of type 2 diabetes mellitus. Remedium Privolzh’ya [Remedium Volga Region]. 2010; Sept: 30. (in Russian)

69. Mkrtumyan A.M., Podachina S.V., Petrachenko V.V. Dibicor is an effective and safe drug for the treatment of diabetes mellitus. Effektivnaya farmakoterapiya. Endokrinologiya [Effective Pharmacotherapy. Endocrinology]. 2008; (2): 34–9. (in Russian)

70. Nedosugova L.V. The place of Dibikor in the complex therapy of diabetes mellitus (literature review). Farmateka [Pharmateca]. 2008; 17 (171): 22–7. (in Russian)

71. Statsenko M.E., Turkina S.V., Tyshchenko I.A., Gorbacheva E.E. Pathogenetic rationale for the inclusion of taurine in the treatment of patients with type 2 diabetes. Consilium Medicum. 2017; 19 (4): 36–42. (in Russian)

72. Svarovskaya A.V., Garganeeva A.A. Evaluation of the effect of taurine on the course of coronary artery disease associated with diabetes of the 2nd type, in patients undergoing coronary revascularization. Meditsinskiy sovet [Medical Council. 2018; (16): 94–9. DOI: https://doi.org/10.21518/2079-701X-2018-16-94-99 (in Russian)

73. Yuzhakova A.E., Nelaeva A.A., Khasanova Yu.V. The role of taurine in the correction of carbohydrate metabolism disorders. Effektivnaya farmakoterapiya [Effective Pharmacotherapy]. 2019; 15: 18–21. (in Russian)

74. Azuma J., Sawamura A., Awata N., et al. Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol. 1985; 8 (5): 276–82. DOI: https://doi.org/10.1002/clc.4960080507

75. Xu Y.J., Arneja A.S., Tappia P.S., Dhalla N.S. The potential health benefits of taurine in cardiovascular disease. Exp Clin Cardiol. 2008; 13 (2): 57–65.

76. Turan B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol. 2010; 11 (8): 819–36. DOI: https://doi.org/10.2174/13892011079326212320874678

77. Wójcik O.P., Koenig K.L., Zeleniuch-Jacquotte A., Costa M., Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010; 208 (1): 19–25. DOI: https://doi.org/10.1016/j.atherosclerosis.2009.06.002

78. Adamchik A.S., Kryuchkova I.V. Possibilities for correcting carbohydrate metabolism disorders and daily blood pressure profile in patients with chronic heart failure and metabolic syndrome. Farmateka [Pharmateca]. 2009; (15): 81–5. (in Russian)

79. Sedova E.M., Magnitskaya O.V. Experience of clinical use of taurine and trimetazidine for chronic heart failure in perimenopausal women. Kardiologiya [Cardiology]. 2010; (1): 734. (in Russian)

80. Ledyaev M. Ya., Zhukova V.B., Anan’eva Ya.A. Use of the drug Dibicor in adolescents with arterial hypertension. Sistemnye gipertenzii [Systemic Hypertension]. 2011; (4): 64–8. (in Russian)

81. Nechaeva G.I., Druk I.V., Ryapolova E.A. Efficacy and tolerability of taurine in patients with type 2 diabetes mellitus and left ventricular diastolic dysfunction. Lechashchiy vrach [Attending Physician]. 2011; (11): 87–91. (in Russian)

82. Gordeev I.G., Pokrovskaya E.M., Luchinkina E.E. The effect of taurine on the incidence of cardiac arrhythmias, dispersion of the QT interval in patients with heart failure due to post-infarction cardiosclerosis: results of a comparative, randomized study. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2012; 11 (1): 65–70. (in Russian)

83. Statsenko M.E., Vinnikova A.A., Ronskaya A.M., Shilina N.N. Taurine in the treatment of chronic heart failure and type 2 diabetes mellitus: effect on microcirculation and elastic properties of great vessels. Serdechnaya nedostatochnost’ [Heart Failure]. 2013; 6 (80): 347–53. (in Russian)

84. Averin E.E. Experience of using taurine at the stage of rehabilitation of patients after cardiac surgery. Serdechnaya nedostatochnost’ [Heart Failure]. 2014; 4 (85): 224–31. (in Russian)

85. Statsenko M.E., Turkina S.V., Shilina N.N. Liver damage in patients with chronic heart failure of ischemic origin and type 2 diabetes mellitus is an insidious tandem: possibilities of additional organoprotective therapy. Consilium Medicum. 2016; 18 (5): 814. (in Russian)

86. Teplova N.V., Abduragimov S.A., Volov N.A., Sofrina S.L., Benevskaya M.A. Taurine in complex therapy of patients with chronic heart failure. Terapiya [Therapy]. 2017; 8 (18): 18–25. (in Russian)

87. Vasil’eva I.S., Rezvan V.V. Study of the effect of taurine on the clinical course of angina pectoris in patients with post-infarction cardiosclerosis. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2018; 4 (156): 66–72. (in Russian)

88. Waldron M., Patterson S.D., Tallent J., Jeffries O. The effects of oral taurine on resting blood pressure in humans: a meta-analysis. Curr Hypertens Rep. 2018; 20 (9): 81. DOI: https://doi.org/10.1007/s11906-018-0881-z

89. Ahmad F., Sharma N.K., Hadley M. Taurine in congestive heart failure. Int J Clin Cardiol. 2021; 8: 246. DOI: https://doi.org/10.23937/2378-2951/1410246

90. Ametov A.S., Turkina S.V. Taurine is an amazing molecule in the management of metabolic syndrome. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2020; 9 (3): 44–51. (in Russian)

91. Ametov A.S., Turkina S.V. Pleiotropic effects of taurine in the treatment of a patient with diabetes. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2022; 11 (4): 78–88. (in Russian)

92. Obinata K., Maruyama T., Hayashi M., et al. Effect of taurine on the fatty liver of children with simple obesity. In: R.J. Huxtable, et al. (eds). Taurine 2. New York: Springer Science+Business Media, 1996: 607–13.

93. Loseva N.V., Moiseenko E.E. Experience of using the drug Dibikor in the complex therapy of non-alcoholic fatty liver disease. Farmateka [Pharmateca]. 2010; (13): 637. (in Russian)

94. Zvenigorodskaya L.A., Nilova T.V. Taurine in the treatment of non-alcoholic fatty liver disease. Eksperimental’naya i klinicheskaya gastoenterologiya [Experimental and Clinical Gastroenterology]. 2012; (11): 70–4. (in Russian)

95. Ovsyannikova O.N., Zvenigorodskaya L.A. The feasibility of using taurine in the treatment of non-alcoholic fatty liver disease. Effektivnaya farmakoterapiya. Gastroenterologiya [Effective Pharmacotherapy. Gastroenterology]. 2012; (2): 38–42. (in Russian)

96. Sizova O.S., Shikh E.V. The possibilities of taurine in the correction of the hepatotoxic effect of antifungal drugs in patients with onychomycosis. Meditsinskiy sovet [Medical Council]. 2012; (9): 76–81. (in Russian)

97. Hsieh Y.L., Yeh Y.H., Lee Y.T., Huang C.Y. Effect of taurine in chronic alcoholic patients. Food Funct. 2014; 5: 1529–35.

98. Koroleva M.V. Possibilities of pathogenetic therapy of drug-induced liver damage in tuberculosis. Zhurnal infektologii [Journal of Infectology]. 2014; (3): 56–61. (in Russian)

99. Koroleva M.V. Economic assessment of the effectiveness of including taurine in the treatment regimen for exogenous toxic liver damage. Vrach-aspirant [Postgraduate Doctor]. 2015; 1 (1): 136–42. (in Russian)

100. Statsenko M.E., Turkina S.V., Shilina N.N., et al. Pharmacotherapy of non-alcoholic fatty liver disease: emphasis on fibrosis. RMZh. Meditsinskoe obozrenie [RMJ. Medical Review]. 2018; 7 (II): 59–63. (in Russian)

101. Statsenko M.E., Turkina S.V., Gorbacheva E.E., et al. The effect of taurine on the level of visceral obesity and the severity of visceral fat dysfunction in patients with non-alcoholic fatty liver disease. Consilium Medicum. 2019; 21 (12): 128-33. DOI: https://doi.org/10.26442/20751753.2019.12.190666 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»