To the content
4 . 2023

Hypertriglyceridemia – a new and important present

Abstract

Current clinical recommendations for the treatment of dyslipidemia are aimed at reducing the concentration of low-density lipoprotein cholesterol (LDL cholesterol) to reduce the risk of atherosclerosis-associated cardiovascular diseases (AACD), however, clinical studies demonstrate a persistent residual or residual risk of AACD, despite an aggressive decrease in LDL cholesterol. Cholesterol, which is not part of high-density lipoproteins, and triglycerides are recognized as the main parameters associated with residual cardiovascular risk, which is especially important for patients with type 2 diabetes mellitus, non-alcoholic fatty liver disease and metabolic syndrome, which are characterized by mixed dyslipidemia. Recent genome-wide analysis and randomized Mendelian studies have confirmed the causal role of elevated triglyceride levels in the development and progression of AACD. The purpose of our review is to actualize the role of hypertriglyceridemia in atherogenesis and to describe modern therapeutic possibilities for its correction in accordance with various clinical recommendations of expert world communities.

Keywords:triglycerides; hypertriglyceridemia; dyslipidemia; cholesterol not included in high-density lipoproteins; fibrates; ω3-polyunsaturated fatty acids; residual cardiovascular risk

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Tsygankova O.V., Apartseva N.E., Ametov A.S. Hypertriglyceridemia – a new and important present. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2023; 12 (4): 99–111. DOI: https://doi.org/10.33029/2304-9529-2023-12-4-99-111 (in Russian)

References

1. Ray K.K., Ference B.A., Séverin T., et al. World Heart Federation Cholesterol Roadmap 2022. Glob Heart. 2022; 17 (1): 75. DOI: https://doi.org/10.5334/gh.1154

2. Ference B.A., Kastelein J.J.P., Ray K.K., et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA. 2019; 321 (4): 364–73. DOI: https://doi.org/10.1001/jama.2018.20045

3. Borén J., Chapman M.J., Krauss R.M., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020; 41 (24): 2313–30. DOI: https://doi.org/10.1093/eurheartj/ehz962

4. Luo Y., Peng D. Residual atherosclerotic cardiovascular disease risk: Focus on non-high-density lipoprotein cholesterol. J Cardiovasc Pharmacol Ther. 2023; 28: 10742484231189597. DOI: https://doi.org/10.1177/10742484231189597

5. Su X., Kong Y., Peng D. Evidence for changing lipid management strategy to focus on non-high density lipoprotein cholesterol. Lipids Health Dis. 2019; 18 (1): 134. DOI: https://doi.org/10.1186/s12944-019-1080-x

6. Varbo A., Nordestgaard B.G. Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2016; 36 (11): 2133–5. DOI: https://doi.org/10.1161/ATVBAHA.116.308305

7. Nordestgaard B.G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: New insights from epidemiology, genetics, and biology. Circ Res. 2016; 118 (4): 547–63. DOI: https://doi.org/10.1161/CIRCRESAHA.115.306249

8. Fahed G., Aoun L., Bou Zerdan M., et al. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci. 2022; 23 (2): 786. DOI: https://doi.org/10.3390/ijms23020786

9. Denimal D., Monier S., Bouillet B., et al. High-density lipoprotein alterations in type 2 diabetes and obesity. Metabolites. 2023; 13 (2): 253. DOI: https://doi.org/10.3390/metabo13020253

10. Tsygankova O.V., Badin A.R., Starichkov A.A., Lozhkina N.G. Non-alcoholic fatty liver disease: a disease of civilization or a syndrome of modern age? RMJ. Medical Review. 2018; (3): 23–8. (in Russian)

11. Clinical guidelines “Lipid metabolism disorders” 2023. [Electronic resource]. https://cr.minzdrav.gov.ru/recomend/752_1 (date of access: 16.11.2023).

12. Laufs U., Parhofer K.G., Ginsberg H.N., Hegele R.A. Clinical review on triglycerides. Eur Heart J. 2020; 41 (1): 99–109c. DOI: https://doi.org/10.1093/eurheartj/ehz785

13. Karpov Y., Khomitskaya Y. PROMETHEUS: an observational, cross-sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015; 14: 115. DOI: https://doi.org/10.1186/s12933-015-0268-2

14. Truthmann J., Schienkiewitz A., Busch M.A., et al. Changes in mean serum lipids among adults in Germany: results from National Health Surveys 1997-99 and 2008-11. BMC Public Health. 2016; 16: 240. DOI: https://doi.org/10.1186/s12889-016-2826-2

15. NCD Risk Factor Collaboration (NCD-RisC). Repositioning of the global epicentre of non-optimal cholesterol. Nature. 2020; 582 (7810): 73–7. DOI: https://doi.org/10.1038/s41586-020-2338-1

16. Shalnova S.A., Metelskaya V.A., Kutsenko V.A., et al. The non-high density lipoprotein cholesterol: A modern benchmark for assessing lipid metabolism disorders. Rational Pharmacotherapy in Cardiology. 2022; 18 (4): 366–75 (in Russian)

17. Stitziel N.O., Khera A.V., Wang X., et al.; PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017; 69 (16): 2054–63. DOI: https://doi.org/10.1016/j.jacc.2017.02.030

18. Bhatt D.L., Steg P.G., Miller M., et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019; 380: 11–22. DOI: https://doi.org/10.1056/NEJMoa1812792

19. Mach F., Baigent C., Catapano A.L., et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41 (1): 111–88. DOI: https://doi.org/10.1093/eurheartj/ehz455 ; Erratum in: Eur Heart J. 2020; 41 (44): 4255.

20. Grundy S.M., Stone N.J., Bailey A.L., et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019; 139 (25): e1082–143. DOI: https://doi.org/10.1161/CIR.0000000000000625; erratum in: Circulation. 2019; 139 (25): e1182–6. Erratum in: Circulation. 2023; 148 (7): e5.

21. Nordestgaard B.G., Langsted A., Mora S., et al.; European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) joint consensus initiative. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016; 37 (25): 1944–58. DOI: https://doi.org/10.1093/eurheartj/ehw152

22. Virani S.S., Morris P.B., Agarwala A., et al. 2021 ACC Expert Consensus Decision Pathway on the Management of ASCVD Risk Reduction in Patients With Persistent Hypertriglyceridemia: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021; 78 (9): 960–93. DOI: https://doi.org/10.1016/j.jacc.2021.06.011

23. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001; 285 (19): 2486–97. DOI: https://doi.org/10.1001/jama.285.19.2486

24. Boytsov S.A., Pogosova N.V., Ansheles A.A., Badtieva V.A., et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023; 28 (5): 5452. DOI: https://doi.org/10.15829/1560-4071-2023-5452 (in Russian)

25. Patel R.S., Pasea L., Soran H., et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022; 21 (1): 102. DOI: https://doi.org/10.1186/s12933-022-01525-5

26. Pedersen S.B., Langsted A., Nordestgaard B.G. Nonfasting mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016; 176 (12): 1834–42. DOI: https://doi.org/10.1001/jamainternmed.2016.6875

27. Du X., Ding J., Ma X., et al. Remnant cholesterol has an important impact on increased carotid intima-media thickness in non-diabetic individuals. Int J Cardiovasc Imaging. 2023. DOI: https://doi.org/10.1007/s10554-023-02957-0

28. Varbo A., Nordestgaard B.G. Nonfasting Triglycerides, Low-density lipoprotein cholesterol, and heart failure risk: Two cohort studies of 113 554 individuals. Arterioscler Thromb Vasc Biol. 2018; 38 (2): 464–72. DOI: https://doi.org/10.1161/ATVBAHA.117.310269

29. Nichols G.A., Philip S., Reynolds K. et al. Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes Metab. 2019; 21 (2): 366–71. DOI: https://doi.org/10.1111/dom.13537

30. Kristensen F.P.B., Christensen D.H., Mortensen M.B., et al. Triglycerides and risk of cardiovascular events in statin-treated patients with newly diagnosed type 2 diabetes: a Danish cohort study. Cardiovasc Diabetol. 2023; 22 (1): 187. DOI: 10.1186/s12933-023-01921-5

31. Varbo A., Benn M., Tybjærg-Hansen A., et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013; 61 (4): 427–36. DOI: https://doi.org/10.1016/j.jacc.2012.08.1026; erratum in: J Am Coll Cardiol. 2019; 73 (8): 987–8.

32. Mark L., Vallejo-Vaz A.J., Reiber I., et al. Non-HDL cholesterol goal attainment and its relationship with triglyceride concentrations among diabetic subjects with cardiovascular disease: A nationwide survey of 2674 individuals in Hungary. Atherosclerosis. 2015; 241 (1): 62–8. DOI: https://doi.org/10.1016/j.atherosclerosis.2015.04.810

33. Chait A., Eckel R.H. The chylomicronemia syndrome is most often multifactorial: A narrative review of causes and treatment. Ann Intern Med. 2019; 170 (9): 626–34. DOI: https://doi.org/10.7326/M19-0203

34. Stahel P., Xiao C., Hegele R.A., Lewis G.F. The atherogenic dyslipidemia complex and novel approaches to cardiovascular disease prevention in diabetes. Can J Cardiol. 2018; 34 (5): 595–604. DOI: https://doi.org/10.1016/j.cjca.2017.12.007

35. Fogelstrand P., Borén J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis. 2012; 22 (1): 1–7. DOI: https://doi.org/10.1016/j.numecd.2011.09.007

36. Peng J., Luo F., Ruan G., Peng R., Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis. 2017; 16 (1): 233. DOI: https://doi.org/10.1186/s12944-017-0625-0

37. Rosenson R.S., Davidson M.H., Hirsh B.J., et al. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2014; 64 (23): 2525–40. DOI: https://doi.org/10.1016/j.jacc.2014.09.042

38. Heo J.H., Jo S.H. Triglyceride-rich lipoproteins and remnant cholesterol in cardiovascular disease. J Korean Med Sci. 2023; 38 (38): e295. DOI: https://doi.org/10.3346/jkms.2023.38.e295

39. Lucero D., López G.I., Gorzalczany S., et al. Alterations in triglyceride rich lipoproteins are related to endothelial dysfunction in metabolic syndrome. Clin Biochem. 2016; 49 (12): 932–5. DOI: https://doi.org/10.1016/j.clinbiochem.2016.04.016

40. Tsygankova O.V., Nikolaev K. Yu., Fedorova E.L., Bondareva Z.G., et al. Risk factors of cardiovascular diseases. Look at the woman. Ateroscleroz. 2014; 10 (1): 44–55. (in Russian)

41. Tsygankova O.V., Platonov D. Yu., Bondareva Z.G., et al. Coronary disease in women: pathogenetic and pathomorphological features of formation and clinical course. Problems of Women Health. 2013; 8 (4): 50–9. (in Russian)

42. Gabani M., Shapiro M.D., Toth P.P. The Role of Triglyceride-rich Lipoproteins and Their Remnants in Atherosclerotic Cardiovascular Disease. Eur Cardiol. 2023; 18: e56. DOI: https://doi.org/10.15420/ecr.2023.16

43. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute; Crosby J., Peloso G.M., Auer P.L., et al. Loss-of-function mutations in APOC 3, triglycerides, and coronary disease. N Engl J Med. 2014; 371 (1): 22–31. DOI: https://doi.org/10.1056/NEJMoa1307095

44. Dewey F.E., Gusarova V., Dunbar R.L., et al. Genetic and pharmacologic Inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017; 377 (3): 211–21. DOI: https://doi.org/10.1056/NEJMoa1612790

45. Yoo J., Jeong I.K., Ahn K.J., et al. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism. 2021; 120: 154798. DOI: https://doi.org/10.1016/j.metabol.2021.154798

46. Hussain A., Al Rifai M., Hermel M., et al. What is really new in triglyceride guidelines? Curr Opin Endocrinol Diabetes Obes. 2023; 30 (2): 73–80. DOI: https://doi.org/10.1097/MED.0000000000000802

47. Keech A., Simes R.J., Barter P., et al.; FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005; Vol. 366 (9500): 1849–61. DOI: https://doi.org/10.1016/S0140-6736(05)67667-2

48. Kawasaki R., Konta T., Nishida K. Lipid-lowering medication is associated with decreased risk of diabetic retinopathy and the need for treatment in patients with type 2 diabetes: A real-world observational analysis of a health claims database. Diabetes Obes Metab. 2018; 20 (10): 2351–60. DOI: https://doi.org/10.1111/dom.13372

49. Scott R., O’Brien R., Fulcher G., et al.; Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study Investigators. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009; 32 (3): 493–8. DOI: https://doi.org/10.2337/dc08-1543

50. ACCORD Study Group; Ginsberg H.N., Elam M.B., Lovato L.C., et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010; 362 (17): 1563–74. DOI: https://doi.org/10.1056/NEJMoa1001282

51. Elam M., Lovato L.C., Ginsberg H. Role of fibrates in cardiovascular disease prevention, the ACCORD-Lipid perspective. Curr Opin Lipidol. 2011; 22 (1): 55–61. DOI: https://doi.org/10.1097/MOL.0b013e328341a5a8

52. Kim N.H., Han K.H., Choi J., et al. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. 2019; 366: l5125. DOI: https://doi.org/10.1136/bmj.l5125

53. Bharti R.K., Koshewara P., Negi P.S., Kaundal P.K. Is fixed dose combination of rosuvastatin with fenofibrate more effective than high dose Rosuvastatin inpatients with stable coronary artery disease with mixed dyslipidemia? A study. Panacea J Med Sci .2023; 13 (2): 504–12. DOI: https://10.18231/j.pjms.2023.095

54. State Register of Medicines. [Electronic resource] URL: https://grls.rosminzdrav.ru (date of access: 20.11.2023) (in Russian)

55. Kim K.S., Hong S., Han K., Park C.Y. Fenofibrate add-on to statin treatment is associated with low all-cause death and cardiovascular disease in the general population with high triglyceride levels. Metabolism. 2022; 137: 155327. DOI: https://doi.org/10.1016/j.metabol.2022.155327

56. Das Pradhan A., Glynn R.J., Fruchart J.C., et al.; PROMINENT Investigators. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N Engl J Med. 2022; 387 (21): 1923–34. DOI: https://doi.org/10.1056/NEJMoa2210645

57. Gao Z., Zhang D., Yan X., et al. Effects of ω-3 polyunsaturated fatty acids on coronary atherosclerosis and inflammation: A systematic review and meta-analysis. Front Cardiovasc Med. 2022; 9: 904250. DOI: https://doi.org/10.3389/fcvm.2022.904250

58. Gaba P., Bhatt D.L., Steg P.G., et al.; REDUCE-IT Investigators. Prevention of cardiovascular events and mortality with icosapent ethyl in patients with prior myocardial infarction. J Am Coll Cardiol. 2022; 79 (17): 1660–71. DOI: https://doi.org/10.1016/j.jacc.2022.02.035

59. Bernasconi A.A., Wiest M.M., Lavie C.J., et al. Effect of omega-3 dosage on cardiovascular outcomes: An updated meta-analysis and meta-regression of interventional trials. Mayo Clin Proc. 2021; 96 (2): 304–13. DOI: https://doi.org/10.1016/j.mayocp.2020.08.034

60. Raja V., Aguiar C., Alsayed N., et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis. 2023; 383: 117312. DOI: https://doi.org/10.1016/j.atherosclerosis.2023.117312

61. Visseren F.L.J., et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). European Heart Journal. 2021; 42 (34): 3227–337. DOI: https://doi.org/10.1016/j.rec.2022.04.003

62. Sezai A., Unosawa S., Taoka M., et al. Long-term comparison of ethyl icosapentate vs. omega-3-acid ethyl in patients with cardiovascular disease and hypertriglyceridemia (DEFAT Trial). Circ J. 2019; 83 (6): 1368–76. DOI: https://doi.org/10.1253/circj.CJ-18-0764

63. Skulas-Ray A.C., Wilson P.W.F., Harris W.S., et al.; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation. 2019; 140 (12): e673–91. DOI: https://doi.org/10.1161/CIR.0000000000000709

64. Wanner C., Tonelli M.; Kidney disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014; 85 (6): 1303–9. DOI: https://doi.org/10.1038/ki.2014.31

65. Nakao J., Ohba T., Takaishi K., Katabuchi H. Omega-3 fatty acids for the treat-ment of hypertriglyceridemia during the second trimester. Nutrition. 2015; 31 (2): 409‑12. DOI: https://doi.org/10.1016/j.nut.2014.09.006

66. Middleton P., Gomersall J.C., Gould J.F., et al. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018; 11 (11): CD 003402. DOI: https://doi.org/10.1002/14651858.CD 003402.pub3

67. Clinical guidelines “Normal pregnancy” 2020. [Electronic resource] URL: https://cr.minzdrav.gov.ru/recomend/288_1 (date of access: 20.11.2023). (in Russian)

68. Bernstein D.L., Respress J.L., Shea A.M. Genetic variants in patients with persistent, severe hypertriglyceridemia. J Clin Lipidol. 2023; 17 (4): e32–3. DOI: https://doi.org/10.1016/j.jacl.2023.05.048

69. Regmi M., Rehman A. Familial hyperchylomicronemia syndrome. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

70. Malick W.A., Do R., Rosenson R.S. Severe hypertriglyceridemia: Existing and emerging therapies. Pharmacol Ther. 2023; 251: 108544. DOI: https://doi.org/10.1016/j.pharmthera.2023.108544

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»