Assessment of possibilities for predicting persistent and recurrent course of Cushing’s disease
AbstractCushing’s disease (CD) is a severe neuroendocrine disease caused by hypersecretion of adrenocorticotropic hormone (ACTH) by a pituitary tumor with clinical symptoms of endogenous hypercortisolism (EH). The «gold standard» of treatment CD is neurosurgery. In a quarter of all cases, surgical treatment does not lead to the development of laboratory and clinical remission, which suggests a persistent course of the disease. When the clinical and laboratory picture returns, it’s recurrence of the disease. Identification of predictors of persistent or recurrent course of the disease is the stage of forecasting and determining an algorithm for patient management.
Aim. To develop and evaluate a prognostic model of the risk of developing persistent and recurrent CD.
Material and methods. A prospective cohort study was conducted among 146 patients with confirmed CD. All patients underwent an analysis of EH activity in the preoperative and postoperative period. We analyzed blood cortisol (nmol/l), salivary cortisol at 23:00 (nmol/l), free cortisol in 24-hour urinary free cortisol (UFC, nmol/day), ACTH (pg/ml), and the degree of reduction of these hormones relative to the preoperative level was determined. All patients were divided into three groups according to disease status. The first group of patients (n=72; 49.3%) consisted of patients who were diagnosed with stable remission of CD. The second group of patients had persistent disease (n=38; 26%). The third group (n=36; 24.7%) consisted of patients with recurrent disease.
Results. To identify the most significant predictors of persistence and relapse, algorithms for stepwise inclusion/exclusion of covariates and an algorithm for analyzing covariates for all possible subsets in logistic regression models were applied. When assessing the risk of persistence, statistically significant differences were identified in ACTH, UFC, and blood cortisol after surgery compared to baseline (p<0.001), as well as the degree of their reduction (p<0.001). When the ratio of ACTH, UFC, and blood cortisol decreased by less than 50%, the risk of persistence of CD was most likely. Biochemical control parameters in both the preoperative and postoperative periods did not determine the risk of recurrence of CD.
Conclusion. Risk factors for persistence and recurrence vary significantly in patients with CD. The most reliable risk factors for persistence are a decrease in the levels of ACTH, UFC and blood cortisol relative to the preoperative period. Risk factors for relapse have not been determined. The use of a specific CD prediction model is necessary to determine an individual patient monitoring strategy.
Keywords:Cushing disease; endogenous hypercortisolism; persistent course; recurrent course; modelling; prediction
Funding. The study had no sponsor support.
Conflict of interest. The authors declare no conflict of interest.
For citation: Andreeva A.V., Antsiferov M.B. Assessment of possibilities for predicting persistent and recurrent course of Cushing’s disease. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2024; 13 (1): 16–26. DOI: https://doi.org/10.33029/2304-9529-2024-13-1-16-26 (in Russian)
References
1. Nieman L.K. Cushing’s syndrome: update on signs, symptoms and biochemical screening. Eur J Endocrinol. 2015; 173 (4): M33–8. DOI: https://doi.org/10.1530/EJE-15-0464; PMID: 26156970; PMCID: PMC 4553096.
2. Marova E.I., Arapova S.D., Belaya Zh.E., et al. Itsenko–Cushing’s disease: the clinical features, diagnosis, treatment. Moscow: GEOTAR-Media, 2012: 64 p. (in Russian)
3. Melnichenko G.A., Dedov I.I., Belaya Zh.E., Rozhinskaya L. Ya., et al. Cushing’s disease: the clinical features, diagnostics, differential diagnostics, and methods of treatment. Problemy endokrinologii [Problems of Endocrinology]. 2015; 61 (2): 55–77. (in Russian)
4. Espinosa-de-Los-Monteros A.L., Sosa-Eroza E., Espinosa E., Mendoza V., Arreola R., Mercado M. Long-term outcome of the different treatment alternatives for recurrent and persistent Cushing disease. Endocr Pract. 2017; 23 (7): 759–67. DOI: https://doi.org/10.4158/EP171756.OR; PMID: 28332874
5. Grigoriev A.J., Azizian V.N., Ivashenko O.V., Nadezhdina E.J. The repeated transsphenoidal adenomectomy because of relapse and persistent course of Itsenko-Kushing disease. Neyrokhirurgiya [Neurosurgery]. 2014; (2): 49–53. (in Russian)
6. Pivonello R., De Leo M., Cozzolino A., Colao A. The treatment of Cushing’s disease. Endocr Rev. 2015; 36 (4): 385–486. DOI: https://doi.org/10.1210/er.2013-1048; PMID: 26067718; PMCID: PMC 4523083.
7. Marova Ye.I., Manchenko О.V., Voronlsov A.V., Goncharov N.P., Kolesnikova G.S. Experience with radiosurgery used in patients with Cushing’s syndrome without detected pituitary adenoma. Problemy endokrinologii [Problems of Endocrinology]. 2008; 54 (3): 21–7. (in Russian)
8. Geer E.B., Shafiq I., Gordon M.B., Bonert V., Ayala A., Swerdloff R.S., et al. Biochemical control during long-term follow-up of 230 adult patients with Cushing disease: a multicenter retrospective study. Endocr Pract. 2017; 23 (8): 962–70. DOI: https://doi.org/10.4158/EP171787.OR; PMID: 28614003.
9. Esposito F., Dusick J.R., Cohan P., Moftakhar P., McArthur D., Wang C., et al. Clinical review: early morning cortisol levels as a predictor of remission after transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab. 2006; 91 (1): 7–13. DOI: https://doi.org/10.1210/jc.2005-1204; PMID: 16234305.
10. Petersenn S., Beckers A., Ferone D., van der Lely A., Bollerslev J., Boscaro M., et al. Therapy of endocrine disease: outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence. Eur J Endocrinol. 2015; 172 (6): R 227–39. DOI: https://doi.org/10.1530/EJE-14-0883; PMID: 25599709.
11. Braun L.T., Rubinstein G., Zopp S., Vogel F., Schmid-Tannwald C., Escudero M.P., et al. Recurrence after pituitary surgery in adult Cushing’s disease: a systematic review on diagnosis and treatment. Endocrine. 2020; 70 (2): 218–31. DOI: https://doi.org/10.1007/s12020-020-02432-z; PMID: 32743767; PMCID: PMC 7396205.
12. Carroll T.B., Javorsky B.R., Findling J.W. Postsurgical recurrent cushing disease: clinical benefit of early intervention in patients with normal urinary free cortisol. Endocr Pract. 2016; 22 (10): 1216–23. DOI: https://doi.org/10.4158/EP161380.OR; PMID: 27409817.
13. Dai C., Fan Y., Liu X., Bao X., Yao Y., Wang R., et al. Predictors of immediate remission after surgery in Cushing’s disease patients: a large retrospective study from a single center. Neuroendocrinology. 2021; 111 (11): 1141–50. DOI: https://doi.org/10.1159/000509221; PMID: 32512562.
14. Brady Z., Garrahy A., Carthy C., O’Reilly M.W., Thompson C.J., Sherlock M., et al. Outcomes of endoscopic transsphenoidal surgery for Cushing’s disease. BMC Endocr Disord. 2021; 21 (1): 36. DOI: https://doi.org/10.1186/s12902-021-00679-9 PMID: 33658018; PMCID: PMC 7931517.
15. Zhang K., Shen M., Qiao N., Chen Z., He W., Ma Z., et al. Surgical outcomes and multidisciplinary management strategy of Cushing’s disease: a single-center experience in China. Neurosurg Focus. 2020; 48 (6): E 7. DOI: https://doi.org/10.3171/2020.3.FOCUS 2067; PMID: 32480378.
16. Bertagna X., Guignat L., Groussin L., Bertherat J. Cushing’s disease. Best Pract Res Clin Endocrinol Metab. 2009; 23 (5): 607–23.
17. Liu Y., Liu X., Hong X., Liu P., Bao X., Yao Y., et al. Prediction of recurrence after transsphenoidal surgery for Cushing’s disease: the use of machine learning algorithms. Neuroendocrinology. 2019; 108 (3): 201–10.
18. Nieman L.K., Biller B.M., Findling J.W., Murad M.H., Newell-Price J., Savage M.O., et al.; Endocrine Society. Treatment of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015; 100 (8): 2807–31.
19. Zhang W., Sun M., Fan Y., Wang H., Feng M., Zhou S., et al. Machine learning in preoperative prediction of postoperative immediate remission of histology-positive Cushing’s disease. Front Endocrinol (Lausanne). 2021; 12: 635795. DOI: https://doi.org/10.3389/fendo.2021.635795; PMID: 33737912; PMCID: PMC 7961560.
20. Hameed N., Yedinak C.G., Brzana J., Gultekin S.H., Coppa N.D., Dogan A., et al. Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing’s disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary. 2013; 16 (4): 452–8. DOI: https://doi.org/10.1007/s11102-012-0455-z; PMID: 23242860.
21. Costenaro F., Rodrigues T.C., Rollin G.A., Ferreira N.P., Czepielewski M.A. Evaluation of Cushing’s disease remission after transsphenoidal surgery based on early serum cortisol dynamics. Clin Endocrinol (Oxf). 2014; 80 (3): 411–8. DOI: https://doi.org/10.1111/cen.12300; PMID: 23895112.
22. Mayberg M., Reintjes S., Patel A., Moloney K., Mercado J., Carlson A., et al. Dynamics of postoperative serum cortisol after transsphenoidal surgery for Cushing’s disease: implications for immediate reoperation and remission. J Neurosurg. 2018; 129 (5): 1268–77. DOI: https://doi.org/10.3171/2017.6.JNS17635; PMID: 29271716.
23. Fan Y., Li Y., Li Y., Feng S., Bao X., Feng M., et al Development and assessment of machine learning algorithms for predicting remission after transsphenoidal surgery among patients with acromegaly. Endocrine. 2020; 67 (2): 412–22. https://doi.org/10.1007/s12020-019-02121-6; PMID: 31673954.
24. Zachariah M.A., Cua S., Muhlestein W.E., Otto B.A., Carrau R.L., Kirschner L.S., et al. Intraoperative predictor of remission in Cushing disease. Oper Neurosurg (Hagerstown). 2023; 24 (4): 460–7. DOI: https://doi.org/10.1227/ons.0000000000000560; PMID: 36701661.
25. Knosp E., Steiner E., Kitz K., Matula C. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993; 33 (4): 610–7. DOI: https://doi.org/10.1227/00006123-199310000-00008; PMID: 8232800.
26. Petersenn S., Beckers A., Ferone D., van der Lely A., Bollerslev J., Boscaro M., et al. Therapy of endocrine disease: outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence. Eur J Endocrinol. 2015; 172 (6): R 227–39. DOI: https://doi.org/10.1530/EJE-14-0883; PMID: 25599709.
27. Starke R.M., Reames D.L., Chen C.J., Laws E.R., Jane J.A. Jr. Endoscopic transsphenoidal surgery for Cushing disease: techniques, outcomes, and predictors of remission. Neurosurgery. 2013; 72 (2): 240–7.
28. Chandler W.F., Barkan A.L., Hollon T., Sakharova A., Sack J., Brahma B., et al. Outcome of transsphenoidal surgery for Cushing disease: a single-center experience over 32 years. Neurosurgery. 2016; 78 (2): 216–23.
29. Abellán Galiana P., Fajardo Montañana C., Riesgo Suárez P.A., Gómez Vela J., Escrivá C.M., Lillo V.R. Factores pronósticos de remisión a largo plazo tras cirugía transesfenoidal en la enfermedad de Cushing [Predictors of long-term remission after transsphenoidal surgery in Cushing’s disease]. Endocrinol Nutr. 2013; 60 (8): 475–82. DOI: https://doi.org/10.1016/j.endonu.2012.09.009; PMID: 23266144. (in Spanish)
30. Yazidi M., Oueslati I., Khessairi N., Chaker F., Chihaoui M. Predictive factors for recurrence of Cushing’s disease after pituitary surgery. Tunis Medical. 2022; 100 (12): 843–46. PMID: 37551534; PMCID: PMC 10505925.
31. Valderrábano P., Aller J., García-Valdecasas L., García-Uría J., et al. Results of repeated transsphenoidal surgery in Cushing’s disease. Long-term follow-up. Endocrinol Nutr. 2014; 61 (4): 176–83. DOI: https://doi.org/10.1016/j.endonu.2013.10.008; PMID: 24355549.
32. Sadhwani N., Suri A., Raheja A., Bora S.K., Khadgawat R., Sharma M.C., et al. Management protocol and surgical techniques for MRI-Negative Cushing’s disease: a series of 6 cases. Neurosurg Focus Video. 2023; 9 (1): V7. DOI: https://doi.org/10.3171/2023.4.FOCVID2318; PMID: 37416811; PMCID: PMC 10321547.
33. Sabahi M., Shahbazi T., Maroufi S.F., et al. MRI-negative Cushing’s disease: a review on therapeutic management. World Neurosurg. 2022; 162: 126–37.e1.
34. Cebula H., Baussart B., Villa C., Assié G., Boulin A., Foubert L., et al. Efficacy of endoscopic endonasal transsphenoidal surgery for Cushing’s disease in 230 patients with positive and negative MRI. Acta Neurochir (Wien). 2017; 159 (7): 1227–36. DOI: https://doi.org/10.1007/s00701-017-3140-1; PMID: 28281008.
35. Gaillard S., Adeniran S., Villa C., Jouinot A., Raffin-Sanson M.L., Feuvret L., et al. Outcome of giant pituitary tumors requiring surgery. Front Endocrinol (Lausanne). 2022; 13: 975560. DOI: https://doi.org/10.3389/fendo.2022.975560; PMID: 36105410; PMCID: PMC 9465329.
36. Danet-Lamasou M., Asselineau J., Perez P., Vivot A., Nunes M.L., Loiseau H., et al. Accuracy of repeated measurements of late-night salivary cortisol to screen for early-stage recurrence of Cushing’s disease following pituitary surgery. Clin Endocrinol (Oxf). 2015; 82 (2): 260–6. DOI: https://doi.org/10.1111/cen.12534; PMID: 24975391.
37. Amlashi F.G., Swearingen B., Faje A.T., Nachtigall L.B., Miller K.K., Klibanski A., et al. Accuracy of late-night salivary cortisol in evaluating postoperative remission and recurrence in Cushing’s disease. J Clin Endocrinol Metab. 2015; 100 (10): 3770–7. DOI: https://doi.org/10.1210/jc.2015-2107; PMID: 26196950.
38. Wang F., Catalino M.P., Bi W.L., Dunn I.F., Smith T.R., Guo Y., et al. Postoperative day 1 morning cortisol value as a biomarker to predict long-term remission of Cushing disease. J Clin Endocrinol Metab. 2021; 106 (1): e94–102. DOI: https://doi.org/10.1210/clinem/dgaa773; PMID: 33108450.
39. Hinojosa-Amaya J.M., Varlamov E.V., McCartney S., Fleseriu M. Hypercortisolemia recurrence in Cushing’s disease; a diagnostic challenge. Front Endocrinol (Lausanne). 2019; 10: 740. DOI: https://doi.org/10.3389/fendo.2019.00740; PMID: 31787930; PMCID: PMC 6856050.