To the content
1 . 2024

Evolution of the classification of thyroid tumors

Abstract

In recent decades, there has been a steady increase in the incidence of thyroid carcinoma, and it is expected to rise continuously. Mortality from malignant neoplasms of the thyroid gland in terms of the number of deaths does not occupy a leading place in world statistics, however, the problem of its diagnosis and treatment is extremely relevant, since the risks and outcomes of various tumors are fundamentally different. The problem is aggravated by the presence in modern thyroidology of neoplasms with unclear malignant potential in addition to benign and malignant tumors. Classifications created by organizations in many countries make the work of doctors more efficient and allow them and scientists to exchange information more effectively. In this review article, we have attempted to show the evolution of the World Health Organization histological classification, and in particular its 2022 update, in line with current understanding of the morphopathology and genetics of thyroid tumors.

Keywords:thyroid carcinoma; tumor; histology; genetics

Funding. This analysis was carried out as part of a research project.

Conflict of interest. The authors declare no obvious or potential conflicts of interests related to the content of this article.

Contribution. Article concept – Bedina A.V., Vechorko E.V., Сovantsev S.D.; analysis and interpretation of results, approval of the final version of the manuscript, agreement to be responsible for all aspects of the work – Dolidze D.D., Saliba M.B., Bedina A.V., Vechorko E.V., Rotin D.L., Сovantsev S.D.

For citation: Dolidze D.D., Saliba M.B., Bedina A.V., Vechorko E.V., Rotin D.L., Сovantsev S.D. Evolution of the classification of thyroid tumors. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2024; 13 (1): 69–79. DOI: https://doi.org/10.33029/2304-9529-2024-13-1-69-79 (in Russian)

References

1. Pizzato M., Li M., Vignat J, Laversanne M, Singh D, La Vecchia C, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022; 10 (4): 264–72.

2. Kim J., Gosnell J.E., Roman S.A. Geographic influences in the global rise of thyroid cancer. Nat Rev Endocrinol. 2020; 16 (1): 17–29.

3. Dolidze D.D., Shabunin A.V., Mumladze R.B., Vardanyan A.V., Covantsev S.D., Shulutko A.M., et al. A Narrative review of preventive central lymph node dissection in patients with papillary thyroid cancer – a necessity or an excess. Front Oncol. 2022; 12: 906695.

4. Абросимов А.Ю., Двинских Н.Ю., Ротин Д.Л. Редкие опухоли щитовидной железы: веретеноклеточная эпителиальная опухоль и карцинома щитовидной железы с тимикоподобной дифференцировкой // Архив патологии. 2007. Т. 69, № 6. С. 34–37. [Abrosimov A., Dvinskikh N., Rotin D.L. Rare thyroid tumors: spindle-cell epithelial tumor and thyroid carcinoma with thymus-like differentiation. Arkhiv patologii [Archive of Pathology]. 2007; 69 (6): 34–7. (in Russian)]

5. Dolidze D., Shabunin А., Vardanyan A., Melnik K., Covantsev S. Prophylaxis of postoperative hypoparathyroidism in thyroid surgery. Folia Medica. 2023; 65 (2): 207–14.

6. WHO Classification of Tumours of Endocrine Organs. Vol. 10. 4th ed. Lyon, France: WHO/IARC Press, 2022.

7. Baloch Z.W., Asa S.L., Barletta J.A., Ghossein R.A., Juhlin C.C., Jung C.K., et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022; 33 (1): 27–63.

8. Asa S.L. The current histologic classification of thyroid cancer. Endocrinol Metab Clin North Am. 2019; 48 (1): 1–22.

9. Krohn K., Führer D., Bayer Y., Eszlinger M., Brauer V., Neumann S., et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev. 2005; 26 (4): 504–24.

10. Jovanovic L., Delahunt B., McIver B., Eberhardt N.L., Grebe S.K.G. Thyroid gland clonality revisited: the embryonal patch size of the normal human thyroid gland is very large, suggesting X-chromosome inactivation tumor clonality studies of thyroid tumors have to be interpreted with caution. J Clin Endocrinol Metab. 2003; 88 (7): 3284–91.

11. Derwahl M., Studer H. Hyperplasia versus adenoma in endocrine tissues: are they different? Trends Endocrinol Metab (TEM). 2002; 13 (1): 23–8.

12. Harrer P., Bröcker M., Zint A., Derwahl M., Barbera L., Zumtobel V. The clonality of nodules in recurrent goiters at second surgery. Langenbecks Arch Surg. 1998; 383 (6): 453–5.

13. Apel R.L., Ezzat S., Bapat B.V., Pan N., LiVolsi V.A., Asa S.L. Clonality of thyroid nodules in sporadic goiter. Diagn Mol Pathol. 1995; 4 (2): 113–21.

14. Rindi G., Mete O., Uccella S., Basturk O., La Rosa S., Brosens L.A.A., et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol. 2022; 33 (1): 115–54. DOI: https://doi.org/10.1007/s12022-022-09708-2

15. Gozu H.I., Bircan R., Krohn K., Müller S., Vural S., Gezen C., et al. Similar prevalence of somatic TSH receptor and Gsalpha mutations in toxic thyroid nodules in geographical regions with different iodine supply in Turkey. Eur J Endocrinol. 2006; 155 (4): 535–45.

16. Trülzsch B., Krohn K., Wonerow P., Chey S., Holzapfel H.P., Ackermann F., et al. Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med (Berl). 2001; 78 (12): 684–91.

17. Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993; 365 (6447): 649–51.

18. Cameselle-Teijeiro J.M., Eloy C., Sobrinho-Simões M. Pitfalls in challenging thyroid tumors: emphasis on differential diagnosis and ancillary biomarkers. Endocr Pathol. 2020; 31 (3): 197–217.

19. Calebiro D., Grassi E.S., Eszlinger M., Ronchi C.L., Godbole A., Bathon K., et al. Recurrent EZH1 mutations are a second hit in autonomous thyroid adenomas. J Clin Invest. 2016; 126 (9): 3383–8.

20. Gasparre G., Porcelli A.M., Bonora E., Pennisi L.F., Toller M., Iommarini L., et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci USA. 2007; 104 (21): 9001–6.

21. Gopal R.K., Kübler K., Calvo S.E., Polak P., Livitz D., Rosebrock D., et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in hürthle cell carcinoma. Cancer Cell. 2018; 34 (2): 242–55.e5.

22. Ganly I., Makarov V., Deraje S., Dong Y., Reznik E., Seshan V., et al. Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell. 2018; 34 (2): 256–70.e5.

23. Máximo V., Botelho T., Capela J., Soares P., Lima J., Taveira A., et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer. 2005; 92 (10): 1892–8.

24. Doerfler W.R., Nikitski A.V., Morariu E.M., Ohori N.P., Chiosea S.I., Landau M.S., et al. Molecular alterations in Hürthle cell nodules and preoperative cancer risk. Endocr Relat Cancer. 2021; 28 (5): 301–9.

25. Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016; 26 (1): 1–133.

26. Fagin J.A., Wells S.A. Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016; 375 (11): 1054–67.

27. Hay I.D., Hutchinson M.E., Gonzalez-Losada T., McIver B., Reinalda M.E., Grant C.S., et al. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008; 144 (6): 980–7.

28. Noguchi S., Yamashita H., Uchino S., Watanabe S. Papillary microcarcinoma. World J Surg. 2008; 32 (5): 747–53.

29. Lo C.Y., Chan W.F., Lang B.H., Lam K.Y., Wan K.Y. Papillary microcarcinoma: is there any difference between clinically overt and occult tumors? World J Surg. 2006; 30 (5): 759–66.

30. Kakudo K., Bai Y., Liu Z., Li Y., Ito Y., Ozaki T. Classification of thyroid follicular cell tumors: with special reference to borderline lesions. Endocr J. 2012; 59 (1): 1–12.

31. Marchiò C., Da Cruz Paula A., Gularte-Merida R., Basili T., Brandes A., da Silva E.M., et al. PAX8-GLIS 3 gene fusion is a pathognomonic genetic alteration of hyalinizing trabecular tumors of the thyroid. Mod Pathol. 2019; 32 (12): 1734–43.

32. Nikiforova M.N., Nikitski A.V., Panebianco F., Kaya C., Yip L., Williams M., et al. GLIS rearrangement is a genomic hallmark of hyalinizing trabecular tumor of the thyroid gland. Thyroid. 2019; 29 (2): 161–73.

33. Nikiforova M.N., Nikiforov Y.E., Ohori N.P. GLIS rearrangements in thyroid nodules: a key to preoperative diagnosis of hyalinizing trabecular tumor. Cancer Cytopathol. 2019; 127 (9): 560–6.

34. Nikiforov Y.E., Seethala R.R., Tallini G., Baloch Z.W., Basolo F., Thompson L.D.R., et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016; 2 (8): 1023–9.

35. Cracolici V., Ritterhouse L.L., Segal J.P., Puranik R., Wanjari P., Kadri S., et al. Follicular thyroid neoplasms: comparison of clinicopathologic and molecular features of atypical adenomas and follicular thyroid carcinomas. Am J Surg Pathol. 2020; 44 (7): 881–92.

36. Juhlin C.C., Bränström R., Shabo I., Höög A. Clear cell variant of a follicular thyroid tumor with uncertain malignant potential: a case report. Int J Surg Pathol. 2019; 27 (3): 290–3.

37. Cabibi D., Mondello A., Florena A.M., Rimi G., Giannone A.G., Cipolla C., et al. A case of follicular tumor of uncertain malignant potential (FT-UMP) with glomeruloid features showing capsular mucinous degeneration. Case Rep Pathol. 2021; 2021: 1686025.

38. Ghossein R., Ganly I., Biagini A., Robenshtok E., Rivera M., Tuttle R.M. Prognostic factors in papillary microcarcinoma with emphasis on histologic subtyping: a clinicopathologic study of 148 cases. Thyroid. 2014; 24 (2): 245–53.

39. Rosai J., LiVolsi V.A., Sobrinho-Simoes M., Williams E.D. Renaming papillary microcarcinoma of the thyroid gland: the Porto proposal. Int J Surg Pathol. 2003; 11 (4): 249–51.

40. Lloyd R.V., Erickson L.A., Casey M.B., Lam K.Y., Lohse C.M., Asa S.L., et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004; 28 (10): 1336–40.

41. Elsheikh T.M., Asa S.L., Chan J.K., DeLellis R.A., Heffess C.S., LiVolsi V.A., et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol. 2008; 130 (5): 736–44.

42. Williams E.D. Guest editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol. 2000; 8 (3): 181–3.

43. Xu B., Wang L., Tuttle R.M., Ganly I., Ghossein R. Prognostic impact of extent of vascular invasion in low-grade encapsulated follicular cell-derived thyroid carcinomas: a clinicopathologic study of 276 cases. Hum Pathol. 2015; 46 (12): 1789–98.

44. Tallini G. Poorly differentiated thyroid carcinoma. Are we there yet? Endocr Pathol. 2011; 22 (4): 190–4.

45. Еремеева Е.Р., Ротин Д.Л., Паклина О.В., Греков Д.Н., Чижова Н.В., Евсиков А.И. Анапластическая карцинома щитовидной железы // Архив патологии. 2020. Т. 82, № 6. С. 55‑58. DOI: https://doi.org/10.17116/patol20208206155 [Eremeeva E.R., Rotin D.L., Paklina O.V., Grekov D.N., Chizhova N.V., Evsikov A.I. [Anaplastic thyroid carcinoma: a case report]. Arkh Patol. 2020; 82 (6): 55–8. DOI: https://doi.org/10.17116/patol20208206155 (in Russian)]

46. Carcangiu M.L., Zampi G., Rosai J. Poorly differentiated («insular») thyroid carcinoma. A reinterpretation of Langhans’ «wuchernde Struma». Am J Surg Pathol. 1984; 8 (9): 655–68.

47. Rosai J. Poorly differentiated thyroid carcinoma: introduction to the issue, its landmarks, and clinical impact. Endocr Pathol. 2004; 15 (4): 293–6.

48. Volante M., Collini P., Nikiforov Y.E., Sakamoto A., Kakudo K., Katoh R., et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007; 31 (8): 1256–64.

49. Akslen L.A., LiVolsi V.A. Prognostic significance of histologic grading compared with subclassification of papillary thyroid carcinoma. Cancer. 2000; 88 (8): 1902–8.

50. Wong K.S., Dong F., Telatar M., Lorch J.H., Alexander E.K., Marqusee E., et al. Papillary thyroid carcinoma with high-grade features versus poorly differentiated thyroid carcinoma: an analysis of clinicopathologic and molecular features and outcome. Thyroid. 2021; 31 (6): 933–40.

51. Hiltzik D., Carlson D.L., Tuttle R.M., Chuai S., Ishill N., Shaha A., et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer. 2006; 106 (6): 1286–95.

52. Xu B., David J., Dogan S., Landa I., Katabi N., Saliba M., et al. Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology. 2022; 80 (2): 322–37.

53. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014; 159 (3): 676–90.

54. Volante M., Lam A.K., Papotti M., Tallini G. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol. 2021; 32 (1): 63–76.

55. Landa I., Ibrahimpasic T., Boucai L., Sinha R., Knauf J.A., Shah R.H., et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016; 126 (3): 1052–66.

56. Hirokawa M., Sugitani I., Kakudo K., Sakamoto A., Higashiyama T., Sugino K., et al. Histopathological analysis of anaplastic thyroid carcinoma cases with long-term survival: a report from the Anaplastic Thyroid Carcinoma Research Consortium of Japan. Endocr J. 2016; 63 (5): 441–7.

57. Kakudo K. How to handle borderline/precursor thyroid tumors in management of patients with thyroid nodules. Gland Surg. 2018; 7 (suppl 1): S 8–18.

58. De Leo S., Trevisan M., Fugazzola L. Recent advances in the management of anaplastic thyroid cancer. Thyroid Res. 2020; 13 (1): 17.

59. Xu B., Fuchs T., Dogan S., Landa I., Katabi N., Fagin J.A., et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020; 30 (10): 1505–17.

60. Lam K.Y., Lo C.Y., Liu M.C. Primary squamous cell carcinoma of the thyroid gland: an entity with aggressive clinical behaviour and distinctive cytokeratin expression profiles. Histopathology. 2001; 39 (3): 279–86.

61. Christofer Juhlin C., Mete O., Baloch Z.W. The 2022 WHO classification of thyroid tumors: novel concepts in nomenclature and grading. Endocr Relat Cancer. 2023; 30 (2): e220293.

62. Ganly I., Ricarte Filho J., Eng S., Ghossein R., Morris L.G., Liang Y., et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J Clin Endocrinol Metab. 2013; 98 (5): E 962–72.

63. Jalaly J.B., Baloch Z.W. Hürthle-cell neoplasms of the thyroid: an algorithmic approach to pathologic diagnosis in light of molecular advances. Semin Diagn Pathol. 2020; 37 (5): 234–42.

64. Goffredo P., Roman S.A., Sosa J.A. Hurthle cell carcinoma: a population-level analysis of 3311 patients. Cancer. 2013; 119 (3): 504–11.

65. Chindris A.M., Casler J.D., Bernet V.J., Rivera M., Thomas C., Kachergus J.M., et al. Clinical and molecular features of Hürthle cell carcinoma of the thyroid. J Clin Endocrinol Metab. 2015; 100 (1): 55–62.

66. Alzumaili B., Xu B., Spanheimer P., Tuttle R., Sherman E., Katabi N., et al. Grading of medullary thyroid carcinoma on the basis of tumor necrosis and high mitotic rate is an independent predictor of poor outcome. Mod Pathol. 2020; 33 (9): 1690–701.

67. Fuchs T., Nassour A., Glover A., Sywak M., Sidhu S., Delbridge L., et al. A proposed grading scheme for medullary thyroid carcinoma based on proliferative activity (Ki-67 and mitotic count) and coagulative necrosis. Am J Surg Pathol. 2020; 44: 1419–28.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Ametov Alexander S.
Honored Scientist of the Russian Federation, Doctor of Medical Sciences, Professor, Head of Subdepartment of Endocrinology, Head of the UNESCO Network Chair on the subject «Bioethics of diabetes as a global problem» of the Russian Medical Academy of Continuous Professional Education (Moscow)
Вскрытие

Journals of «GEOTAR-Media»