Трабекулярный костный индекс (TBS): новые возможности изучения качества костной ткани и оценки риска переломов у пациентов с сахарным диабетом типа 2

РезюмеВ статье проведен анализ данных современной научной литературы об изучении качества костной ткани и риска переломов у пациентов с сахарным диабетом типа 2. Известно, что у пациентов с сахарным диабетом типа 2 минеральная плотность костной ткани не снижена, поэтому подход к оценке риска переломов у них должен быть иным, чем у большинства женщин в период постменопаузы. Hовый инструмент оценки микроархитектоники костной ткани в ходе двухэнергетической рентгеновской абсорбциометрии -костный трабекулярный индекс (trabecular bone score - TBS) - дает нам дополнительные возможности без дополнительных экономических затрат на диагностический процесс.

Ключевые слова:остеопороз, костный трабекулярный индекс, качество костной ткани, сахарный диабет типа 2, риск переломов

Эндокринология: новости, мнения, обучение. 2016. № 4. С. 32-39.

По данным ВОЗ, остеопороз входит в четверку забо­леваний, лидирующих по смертности и инвалидизации населения наравне с сердечно-сосудистыми заболеваниями, сахарным диабетом (СД) и новообразова­ниями различной локализации [1]. Во всем мире остеопорозом болеют более 200 млн женщин, в России остеопорозом страдают 14 млн человек (10% населения) [2, 3]. Хотя диагностика остеопороза основывается на количественной оценке костной массы (минеральной плотности кости -МПК), которая является одним из ведущих факторов прочности костей, клиническая значимость остеопороза заклю­чается в его манифестациях - переломах, возникающих при небольшой травме [4]. Примерно 50% женщин старше 50 лет сталкивается на протяжении своей жизни хотя бы с одним остеопоротическим переломом. Остеопоротические переломы оказываются причиной ухудшения качества жизни, инвалидизации, увеличения уровня смертности [5].

Численность больных СД в мире за последние 10 лет уве­личилась более чем в 2 раза. Согласно прогнозам Междуна­родной диабетической федерации, к 2035 г. СД будет стра­дать 592 млн человек [6]. Так называемая диабетическая остеопатия - это осложнение СД как типа 1 (СД1), так и типа 2 (СД2), и она характеризуется изменениями микроархитекту­ры кости, снижающими качество кости, которые в конечном итоге приводят к увеличению риска переломов у пациентов с обоими типами СД [7, 8]. СД2 ассоциирован с увеличением риска переломов. Так, суммарный риск перелома прокси­мального отдела бедра (RR) у мужчин с СД2 составляет 2,8, а у женщин - 2,1 [9]. Увеличение частоты переломов при СД2 имеет иной, чем при СД1, механизм, так, например, при СД1 снижение эндогенного инсулина приводит к снижению МПК. При СД2 ожирение, увеличение нагрузки на костную ткань и гиперинсулинемия могут привести к повышению МПК [10]. Вместе с тем гипергликемия, накопление конечных продук­тов гликирования, оксидативный стресс, глюкозурия способ­ствуют развитию ангиопатии сосудов надкостницы, наруше­нию формирования коллагенового матрикса кости, процесса обновления кости, что нарушает качественные показатели кости [11].

Важнейшей детерминантой остеопороза и риска перело­мов является определение МПК в ходе двухэнергетической рентгеновской абсорбциометрии DХА). Известно, что сни­жение МПК на 1 стандартное отклонение (СО) увеличивает риск перелома вдвое [12].

Тем не менее большая часть переломов происходит у лиц с показателями МПК при Т-критерии более чем -2,5 СО (т.е. соответствующей норме или остеопении), нередко результа­ты МПК у пациентов с переломами и без последующих пере­ломов совпадают [13-16].

В рамках проспективного популяционного Роттер­дамского исследования риска переломов у пациентов с хроническими заболеваниями в популяции пациентов с СД2 (n=792) показано, что, несмотря на более высокий уровень МПК по сравнению с пациентами без диабета (МПК шейки бедра 0,852±0,008 против 0,833±0,002, МПК поясничного отдела позвоночника 1,120+0,012 против 1,086+0,003; p<0,05), риск переломов у них повышен [от­ношение рисков (ОР) для внепозвоночных переломов -1,69 (1,16-2,46), для переломов лучевой кости - 2,14 (1,10-4,18)] [17]. Следовательно, у этих пациентов име­ются другие, кроме плотности кости, факторы, влияющие на риск переломов, и необходим поиск методов оценки качества костной ткани и ассоциированного с ним риска переломов у пациентов с СД2 [11].

За последние годы появились различные методики оцен­ки костной архитектоники и качества костной ткани. Среди неинвазивных методов микрокомпьютерная томография, магнитно-резонансная томография и количественная компьютерная томография высокого разрешения позволяют прямым или непрямым образом оценить структуру кости, получив ее объемное изображение. Эти методы недоступны в рутинной практике, поскольку имеют высокую стоимость [18-22]. Золотым стандартом прямой оценки костной архи­тектуры остается гистоморфометрический анализ получен­ной при биопсии ткани гребня подвздошной кости, но дан­ная методика является инвазивной и не позволяет оценить объемные характеристики кости [23].

В последние годы произошло усовершенствование как аппаратного, так и программного обеспечения метода DXA [24]. Современное высококачественное DXA-скани-рование кости позволяет получить проекцию 3D-изобра-жения на плоскости и оценить микроархитектонику кости, что дает представление о качестве костной ткани. Данный метод получил название "trabecular bone score" (TBS) -костный трабекулярный индекс [25].

Целью настоящего обзора является анализ литературы, посвященной возможностям метода оценки TBS в изуче­нии качества костной ткани, и определение возможности его использования при прогнозировании риска перелома при СД2.

Костный трабекулярный индекс и его роль в оценке остеопороза и переломов

Метод костного трабекулярного индекса (TBS) - анали­тический метод оценки структуры трабекулярной ткани по­звонков поясничного отдела позвоночника, разработанный в 2008 г. В его основу положен анализ вариаций в серой шкале и амплитуды плотности пикселей рентгеновского изображения, получаемого на денситометре. Пакет про­граммного обеспечения устанавливается на персональ­ных компьютерах остеоденситометров Lunar и Hologic для оценки микроархитектуры трабекулярной костной ткани на изображениях поясничного отдела позвоночника. Метод не является прямым измерением микроархитектуры кости, но он прямым или обратным образом соотносится с таки­ми 3D-характеристиками кости, как плотность соединений (connectivity density, connD), число трабекул (trabecular number, TbN), расстояние между трабекулами (trabecular separation, TbSp) [19, 26].

Метод TBS основан на следующей концепции. Здоровый пациент имеет хорошую и плотную структуру трабекулярной ткани, большое число трабекул и небольшие расстоя­ния между трабекулами. Если спроецировать структуру на плоскость, получится изображение, содержащее большое количество вариаций значения пикселей, но амплитуда этих вариаций будет небольшой. Hапротив, у пациента с остеопорозом наблюдаются порозность и нарушение структуры трабекул, снижение числа трабекул и широкие промежут­ки между трабекулами. При проецировании на плоскость получится изображение, содержащее небольшое количе­ство вариаций значений пикселей, но амплитуда этих ва­риаций будет более высокой [11]. Hа основе вариограммы этих спроецированных 2D-изображений возможно мате­матическое описание 3D-структуры. Это и называется TBS.

Чем выше TBS, тем лучше структура кости. Сила кости снижа­ется в большей степени из-за нарушения связи между трабекулами, чем из-за снижения массы трабекул [8].

Проще говоря, TBS можно сравнить с аэрофотосъемкой двух древнегреческих сооружений (см. рисунок). На таком снимке невозможно увидеть отдельные колонны, а следо­вательно, подсчитать их количество (на DXA-изображении невозможно определить отдельные трабекулы и подсчитать их количество). Вместо этого можно определить площадь, свободную от колонн [площадь пустот (межтрабекулярного пространства) трабекулярной кости].

Метод легко воспроизводим, не требуется проведения дополнительного к DXA инструментального обследования, возможна также ретроспективная оценка денситограмм по­ясничного отдела позвоночника [27]. TBS высчитывается при анализе уже имеющихся д енситограмм поясничного от­дела позвоночника, поэтому может быть определен в любое время, даже если DXA-исследование было проведено за годы до подсчета TBS. Обычно анализу подвергается усредненный показатель TBS четырех поясничных позвонков (L1-L4).

Оценка показателей TBS у женщин периода постмено­паузы, предложенная Международной рабочей группой пользователей TBS, делит показания на 3 диапазона - от наибольшего показателя, соответствующего нормальной микроархитектонике кости, до показателей в нижней трети численного диапазона, соответствующих разрушению структуры кости [28] (см. таблицу). Высокий показатель TBS пред­ставляет прочную, устойчивую к переломам микроархитектонику кости, тогда как низкий показатель имеет место при слабой и склонной к переломам структуре трабекулярной кости [29]. Ниже приведен пример интерпретации показа­телей TBS, предложенной международной группой пользо­вателей TBS [28].

Анализ роли костного трабекулярного индекса в прогнозировании вероятности переломов

В 2015 г. был опубликован обзор литературы, посвя­щенной диагностической ценности метода TBS, в который вошли 11 одномоментных и 6 проспективных исследований, вышедших в печать в период 2009-2015 гг. [29]. Основной исследованной популяцией были женщины в постменопаузе. Самое крупное исследование проведено в Канаде (про­винция Манитоба) с участием 29 407 женщин в постменопаузальном периоде, которые наблюдались от 5 до 8 лет. В ходе наблюдения выявлено 1668 основных остеопорозных переломов, включая 439 переломов позвоночника и 293 перелома бедра. Оказалось, что данные МПК пояс­ничного отдела позвоночника и TBS в равной степени про­гнозировали эти переломы, однако их комбинация работала лучше, чем оба метода по отдельности. Интересно, что между собой методы имели слабую корреляцию (r=0,32) и только 10% вариаций одного метода могли быть объяснены вариа­циями другого [30].

В когортном проспективном исследовании, проведенном в Японии, среди 665 женщин в постменопаузе было морфо-метрически подтверждено развитие 140 новых переломов позвоночника у 92 пациенток. Заболеваемость увеличива­лась параллельно изменению TBS от наибольшего показате­ля до наименьшей трети (по классификации Международной рабочей группы пользователей TBS), независимо от показа­теля МПК.

Авторы обзора обращают внимание на то, что толь­ко одно проспективное исследование проведено на по­пуляции мужчин старше 50 лет (n=3620; средний возраст 67,6 года) внутри когорты пациентов из провинции Манито­ба. В течение 4,5 года наблюдения в этой популяции выявле­но 183 остеопоротических перелома. TBS стал предиктором переломов бедра, позвоночника и других остеопоротических переломов. Тем не менее после поправки на возраст, показа­тели FRAX (Fracture Risk Assessment Tool - шкала оценки ве­роятности возникновения переломов), терапию остеопороза и МПК достоверность прогностической ценности сохрани­лась только в отношении переломов бедра. Авторы указыва­ют на существование доказательств взаимодействия между показателями МПК и TBS. Так, TBS обладает большей прогно­стической ценностью у пациентов с МПК более -2,5 СО [31].

В последнем метаанализе 14 проспективных популяционных исследований с включением 17 809 мужчин и женщин риск переломов выражен как градиент риска (GR, увеличе­ние риска переломов/стандартное отклонение SD разницы TBS). Градиент риска по TBS для переломов бедра и других крупных остеопоротических переломов (переломы позвоночника, дистальной части предплечья, проксимальные переломы плечевой кости) был в диапазоне 1,31-1,54 в за­висимости от возраста и исходов переломов, и он не разли­чался у мужчин и у женщин [32].

Таким образом, низкий TBS поясничного отдела по­звоночника является диагностически ценным показателем и, по крайней мере, частично независимым от МПК. Степень диагностической ценности в прогнозировании переломов при совместном использовании с МПК в настоящее время обсуждается.

Алгоритм FRAX, рассчитывающий 10-летний абсолютный риск переломов, до недавнего времени не содержал де­терминант прочности костной ткани, которые бы улучшали прогностическую ценность протокола по меньшей мере ча­стично, независимо от показателя МПК [29]. Исследование в провинции Манитоба и метаанализ 14 когортных иссле­дований подтверждают наличие независимой ценности низкого уровня TBS поясничного отдела в прогнозировании основных остеопоротических переломов. В настоящее вре­мя показатель TBS включен в алгоритм FRAX, добавляя та­ким образом качественные характеристики кости в оценку 10-летнего риска переломов, и делает возможным пересмотр порога терапевтического вмешательства, рассчитанный по алгоритму FRAX для ряда пациентов [29].

Возможность использования метода для оценки эффективности лечения остеопороза

В ряде исследований [33-38] изучена роль TBS в оценке эффективности терапии остеопороза различными препара­тами (кальцитонин, терипаратид, стронция ранелат). Наи­более крупным было исследование типа "случай-контроль" в провинции Манитоба, включившее 524 женщины постменопаузального возраста. Пациенткам в связи с наличием показаний были назначены бисфосфонаты (86%), ралоксифен (10%) и кальцитонин (4%), и они были в среднем стар­ше, имели большее количество предшествующих переломов и более низкие показатели МПК и TBS, чем пациентки группы контроля, не получавшие лечение. После периода наблюде­ния МПК и TBS в группе лечения увеличились на 1,9 и 0,2% соответственно, тогда как в группе контроля снизились на 0,4 и 0,3% (статистически значимые изменения по сравне­нию с исходными). В этом исследовании также выявлена слабая степень корреляции изменений показателей МПК и TBS между собой, что указывает на их частичную независи­мость в характеристике костной структуры [36].

Рандомизированное исследование проведено в Швей­царии, где 54 женщины получали золедроновую кислоту в течение 3 лет. Группу сравнения составили 53 женщины, получавшие плацебо, исходная МПК которых была выше на момент включения (Т-критерий -2,1 против -2,9). Через 3 года у женщин группы лечения МПК и TBS поясничного от­дела позвоночника достоверно увеличились на 9,6 и 1,4% соответственно, тогда как в группе плацебо МПК стала незначительно выше (на 1,4%), а TBS уменьшился на 0,5% [38]. В данном исследовании изменения показателей МПК и TBS между собой также имели слабую степень корреляции.

Двойное слепое рандомизированное плацебо-контролируемое исследование по изучению влияния адъювантной терапии золедроновой кислотой у женщин с эстроген-рецепторным и/или прогестерон-рецепторным раком легких показало достоверное увеличение обоих показателей, при этом прирост МПК был более выраженным [39]. Когортное исследование проведено на 390 пациентах для сравнения эффекта различных вариантов терапии на МПК и TBS. Через 24 мес увеличение показателя TBS было выявлено только в группе пациентов, получавших алендронат (+1,4%), деносумаб (+2,8%) и терипаратид (+3,6%). TBS сохранился на прежнем уровне у пациентов, получавших витамин D и пре­параты кальция, и снизился у пациентов без лечения [40].

Различие эффектов препаратов для лечения остеопороза продемонстрировало исследование D. Hans и соавт. [34]. В подгруппе женщин с постменопаузальным остеопорозом проведена рандомизация на группу, получавшую 2 г в день стронция ранелата, и группу, получавшую 70 мг в не­делю алендроната. TBS и МПК оценивали через 12 и 24 мес терапии. Через 24 мес МПК повысилась в группе стронция ранелата на 9% и в группе алендроната на 7,6%, тогда как TBS в группе стронция ранелата повысился на 3,1%, а в груп­пе алендроната статистически незначимо (1%) [34]. Эти находки не противоречат тому факту, что влияние антирезорбтивной терапии в меньшей степени распространяется на качество трабекул [41]. В целом возможность примене­ния TBS для динамического наблюдения в процессе терапии остеопороза остается предметом дискуссий. Очевидно, что для окончательных выводов необходимы дальнейшие иссле­дования.

Костный трабекулярный индекс и риск переломов у пациентов с сахарным диабетом типа 2

Наиболее привлекательным представляется применение TBS для оценки риска переломов у пациентов, МПК которых находится в диапазоне по Т-критерию выше -2,5 СО. Как уже было упомянуто, МПК у пациентов с СД2 плохо прогнозирует риск переломов по сравнению с женщинами постменопаузального возраста, следовательно, данный метод неэффек­тивен у них в оценке риска переломов [42]. К настоящему времени 3 исследования продемонстрировали, что, хотя МПК имеет тенденцию быть выше у пациентов с СД, чем у паци­ентов без СД, в отношении показателя TBS ситуация прямо противоположная. Исследование в Манитобе включало ко­горту из 29 407 женщин в возрасте старше 50 лет, в которой была выделена группа пациенток с СД2. После поправки на возраст и клинические фактора риска, в рамках алгоритма FRAX было выявлено, что у пациенток с СД2 показатели TBS чаще располагались в нижней трети диапазона значений, что свидетельствует о нарушении костной архитектоники, тогда как вероятность попадания показателя МПК поясничного отдела позвоночника, шейки бедра и проксимальной части бедра в нижнюю треть диапазона значений в данной группе пациенток была минимальной [43]. В сравнении с пациент­ками без СД МПК во всех зонах была выше, а TBS был ниже как без внесения, так и после внесения поправки (р<0,001). В течение периода наблюдения (4,7 года) основные остеопоротические переломы выявлены у 175 (7,4%) женщин с СД и у 1493 (5,5%) женщин без СД (р<0,001).

TBS был МПК-независимым предиктором переломов и прогнозировал переломы у пациенток с СД [скоррек­тированное ОР=1,27, 95% доверительный интервал (ДИ) 1,1-1,46] и без СД (ОР=1,31, 95% ДИ 1,24-1,38). В статисти­ческой модели с множественными переменными с СД было связано 49% увеличения риска основных остеопорозных переломов после коррекции по переменным (скорректиро­ванное ОР 95% ДИ 1,27-1,74). При добавлении TBS в стати­стическую модель эффект влияния диабета снижался с 23,6 до 13,6, тогда как при включении МПК увеличивался до 32,0. Данные расчеты показывают, что показатель TBS определяет значительно большую часть ассоциированных с СД перело­мов, чем МПК [43].

Аналогичные данные были получены и в когортном ис­следовании J.H. Kim и соавт. (с участием 1229 мужчин и 1529 женщин постменопаузального возраста, среди кото­рых было 325 мужчин и 370 женщин с СД2): TBS пояснич­ного отдела позвоночника был ниже у пациентов с СД, чем у мужчин и женщин без СД, тогда как МПК поясничного отдела позвоночника была выше у мужчин и женщин с СД [44].

Для клинициста важно понимать наличие связи между качеством контроля СД и состоянием костной ткани. Вопре­ки ожиданиям, в ряде исследований линейной зависимости между уровнем гликозилированного гемоглобина (HbA1c), гликемии натощак и риском переломов не выявлено [45]. C. Gagnon и соавт. в 2010 г. описали даже снижение ри­ска переломов у пациентов с нарушением толерантности к глюкозе по сравнению с пациентами без нарушений угле­водного обмена [46]. В то же время у пациентов с неудов­летворительным контролем гликемии при СД2 (HbA1c выше 7,5%) показатель TBS, отражающий качественные харак­теристики кости, был ниже, чем у пациентов с HbA1c ниже 7,5%, в то время как МПК не имел различий [47]. В другом исследовании TBS у пациентов с СД имел отрицательную корреляцию с уровнем HbA1c, гликемией и уровнем инсулина натощак [44].

С точки зрения клинической практики TBS, совместно с МПК, у пациентов с СД2 является предиктором переломов. Его добавление в анализ увеличивает процент пациентов группы риска за счет тех, качество костной ткани у которых важнее ее количественных характеристик.

Таким образом, у пациентов с СД2 более высокая веро­ятность переломов по сравнению с общей популяцией, при этом риск реализуется при более высоком, чем в популяции, уровне МПК. На повышение риска переломов оказывает влияние множество факторов, увеличивающих риск падений данных пациентов, а также снижение качественных харак­теристик костной ткани. Изучение качества костной ткани у данной категории - важный компонент прогнозирования переломов. Методы инвазивной диагностики и компьютер­ной томографии не доступны в рутинной практике.

Оценка качества трабекулярной ткани посредством TBS, выполняемая на основе существующих денситометров при установке пакета программного обеспечения без значи­тельного усложнения и увеличения стоимости диагностики, представляется перспективным методом диагностики. Необ­ходимо проведение дальнейших исследований по роли TBS в прогнозировании риска остеопоротических переломов в динамическом наблюдении пациентов с СД2.

Информация о конфликте интересов. Авторы деклари­руют отсутствие явных и потенциальных конфликтов интере­сов, связанных с публикацией статьи.

Информация о финансировании. Финансирование процесса публикации осуществляется авторами статьи.

Информация о вкладе каждого автора. Т.В. Грачева -отбор источников литературы, анализ, написание обзора ли­тературы; О.М. Лесняк - концепция и редактирование обзо­ра литературы.

ЛИТЕРАТУРА

1. Аметов А.С., Доскина Е.В. Заболевания эндокринной системы и остеопороз // Рус. мед. журн. 2004. № 17. С. 1130-1136.

2. Лесняк О.М. Аудит состояния проблемы остеопороза в странах Восточной Европы и Центральной Азии 2010 // Остеопороз и остео­патии. 2011. № 2. С. 3-6.

3. Hernlund E., Svedbom A., Ivergard M. et al. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Osteoporosis in the European Union: medical management, epidemiology and economic burden // J. Arch. Osteoporos. 2013, N 8. P. 136-256.

4. Kanis J.A., Burlet N., Cooper C. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women // J. Osteoporos Int. 2008. Vol. 19, N 1. P. 399-428.

5. North American Menopause Society. Management of osteoporosisin postmenopausal women: 2006 position statement of The North American Menopause Society // Menopause. 2006. Vol. l, N 13. P. 340-367.

6. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / под ред. И.И. Дедова, М.В. Шестаковой (6-й вы­пуск) // Сахарный диабет. 2013;(1s):1-121.

7. Nyman J. S., Even J. L., Jo C.-H. et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone // J. Bone. 2011. Vol. 48, N 4. P. 733-740.

8. van der Linden J.C., Homminga J., Verhaar J.A., Weinans H. Mechanical consequences of bone loss in cancellous bone // J. Bone Miner. Res. 2001. Vol. 16, N 3. P. 457-465.

9. Janghorbani M., van Dam R. M., Willett W R. et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture // Am. J. Epidemiol. 2007. Vol. 166, N 5. P. 495-505.

10. Milczarczyk A., Franek E. Osteoporosis and bone fractures in patients with diabetes mellitus // Diabetologia Doґswiadczalnai Kliniczna. 2008. Vol. 8, N 2. P. 63-67.

11. Jackuliak P., Payer J. Osteoporosis, fractures, and diabetes // Int. J. Endocrinol. Vol. 2014, N 2014. Article ID 820615.

12. Marshall D., Johnell O., Wedel H. Metaanalysis of how well measures of bone mineralensity predict occurrence of osteoporotic fractures // Br. Med. J. 1996. Vol. 312, N 7041. P. 1254-1259.

13. Johansson H., Kanis J.A., Oden A. et al. BMD, clinical risk factors and their combination for hip fracture prevention // J. Osteoporos. Int. 2009. Vol. 20, N 10. P. 1675-1682.

14. Kanis J.A., on behalf of the World Health Organization Scientific Group. Assessment ofosteoporosis at the primary health-care level. Technical Report. UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, 2007.

15. Mc Clung M.R. Do current management strategies and guidelines adequately address fracture risk? // J. Bone. 2006. Vol. 38, N 2. P. S13-S17.

16. Miller P.D., Siris E.S., Barrett-Connor E. et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment // J. Bone Miner. Res. 2002. Vol. 17, N 12. P. 2222-2230.

17. De Liefde II, van der Klift M., de Laet C.E. et al. Bone mineral density and fracture risk in type2 diabetes mellitus: the Rotterdam Study // J. Osteoporos. Int. 2005. Vol. 16, N 12. P. 1713-1720.

18. Boutroy S., Bouxsein M.L., Munoz F., Delmas P.D. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography // J. Clin. Endocrinol. Metab. 2005. Vol. 90, N 12. P. 6508-6515.

19. Hans D., Barthe N., Boutroy S. et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae // J. Clin. Densitom. 2011. Vol. 14, N 3. P. 302-312.

20. Hildebrand T., Laib A., Muller R. et al. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus // J. Bone Miner. Res. 1999. Vol. 14, N 7. P. 1167-1174.

21. Krug R., Carballido-Gamio J., Banerjee S. et al. In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture // J. Magn. Reson. Imaging. 2008. Vol. 27, N 4. P. 854-859.

22. Sawada K., Morishige K.-I., Ohmichi M. et al. Peripheral quantitative computed tomography (pQCT) is useful for monitoring bone mineral density of the patients who receive hormone replacement therapy // J. Maturitas. 2007. Vol. 56, N 4. P. 343-349.

23. Kulak C.A., Dempster D.W. Bone histomorphometry: a concise review for endocrinologists and clinicians // Arq. Bras. Endocrinol. Metabol. 2010. Vol. 54, N 2. P. 87-98.

24. Bonnick S. Bone densitometry in clinical practice: application and interpretation. 2nd ed. Totowa, NJ: Human Press Inc, 2004.

25. Silva B.C., Bilezikian J.P. Trabecular bone score: perspectives of an imaging technology coming of age // J. Arq. Bras. Endocrinol. Metab. 2014. Vol. 58, N 5. P. 493-503.

26. Winzenrieth R., Michelet F., Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise // J. Clin. Densitom. 2013. Vol. 16. P. 287-296.

27. Поворознюк В.В., Дзерович К.И. Качество трабекулярной костной ткани у женщин в зависимости от длительности постмено-паузального периода // Боль, суставы, позвоночник. 2012. Т. 2. № 6. С. 86-88.

28. Cormier C., Lamy O., Poriau S. TBS in routine clinial practice: proposals of use. For the Medimaps Group, 2012: Accessed on: http://www.medimapsgroup.com/upload/MEDIMAPS-UK-WEB.pdf.

29. Harvey N.C., Gluer С.С., Binkley N. et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice // J. Bone. 2015. [Article in press].

30. Hans D., Goertzen A.L., Krieg M.-A., Leslie W.D. Bone micro­architecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba 666 study // J. Bone Miner. Res. 2011. Vol. 26, N 11. P. 2762-2769.

31. Leslie W.D., Aubry-Rozier B., Lix L.M. et al. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program // J. Bone. 2014. Vol. 67. P. 10-14.

32. Kanis J.A., Oden A., Harvey N.C. et al. A meta-analysis of trabecular bone score in fracture risk prediction and its interaction with FRAX // J. Osteoporos Int. 2015; 26.

33. Gunther B., Popp A., Stoll D. et al. Beneficial effect of PTH on spine BMD and microarchitecture (TBS) parameters in postmenopausal women with osteoporosis. A 2-year study // J. Osteoporos. Int. 2012. Vol. 23, Suppl 2. P. S332-S333.

34. Hans D., Krieg M., Lamy O., Felsenberg D. Beneficial Effects of strontium ranelate compared to alendronate on trabecular bone score in post menopausal osteoporotic women. A 2-year study // J. Osteoporos. Int. 2012. Vol. 23, Suppl. 2. P. S265-S267.

35. Kalder M., Hans D., Kyvernitakis I., et al. Effects of exemestane and tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer // J. Clin. Densitom. 2014. Vol. 17, N 1. P. 66-71.

36. Krieg MA, AuЬry-Rozier B., Hans D., LesLie W.D. Effects of anti-resorptive agents on trabecular Ьone score (TBS) in oLder women // J. Osteoporos. Int. 2013. VoL. 24. P. 1073-1078.

37. McCLung M., Lippuner K., Brandi M. et aL. Denosumab significantLy improved trabecuLar Ьone score (TBS), an index of traЬecuLar microarchi­tecture, in postmenopausaL women with osteoporosis // J. Bone Miner. Res. 2012. VoL. 27, SuppL. 1. P. S58-S59.

38. Popp A.W., GuLer S., Lamy O. et aL. Effects of zoLedronate versus pLaceЬo on spine Ьone mineraL density and microarchitecture assessed Ьу the trabecuLar Ьone score in postmenopausaL women with osteoporosis: a three-year study // J. Bone Miner. Res. 2013. VoL. 28, N 3. P. 449­454.

39. KaLder M., Kyvernitakis I., ALbert U.S. et aL. Effects of zoLedronic acid versus pLaceЬo on Ьone mineraL density and Ьone texture anaLysis assessed bу the trabecular bone score in premenopausaL women with breast cancer treatment-induced Ьone Loss: resuLts of the ProBONE II substudy // J. Osteoporos. Int. 2015. VoL. 26, N 1. P. 353-360.

40. Sato Y., Iki M., Fujita Y., Tamaki J. et aL. Greater miLk intake is associated with Lower Ьone turnover, higher Ьone density, and higher Ьone microarchitecture index in a popuLation of eLderLy Japanese men with reLativeLy Low dietary caLcium intake: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study // Osteoporos Int. 2015. [EpuЬ ahead of print].

41. Silva B.C., Leslie W.D., Resch H. et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image // J. Bone Miner. Res. 2014. Vol. 29, N 3. P. 518-530.

42. Saito M., Kida Y., Kato S., Marumo K. Diabetes, collagen, and bone quality // Osteoporos Rep. 2014. Vol. 12, N 2. P. 181-188.

43. Leslie W.D., Aubry-Rozier B., Lamy O., Hans D. TBS (Trabecular Bone Score) and diabetes-related fracture RISK // J. Clin. Endocrinol. Metab. 2013. Vol. 98, N 2. P. 602-609.

44. Kim J.H., Choi H.J., Ku E.J. et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes // J. Clin. Endocrinol. Metab. 2015. Vol. 100. P. 475-482.

45. Strotmeyer E.S., Cauley J.A., Schwartz A.V. et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study // J. Arch. Intern. Med. 2005. Vol. 165, N 14. P. 1612­1617.

46. Gagnon C., Magliano D.J., Ebeling P.R. et al. Association between hyperglycaemia and fracture risk in non-diabetic middle-aged and older Australians: a national, population-based prospective study (AusDiab) // J. Osteoporos. Int. 2010. Vol. 21, N 12. P. 2067-2074.

47. Dhaliwal R., Cibula D., Ghosh C., Weinstock R.S., Moses A.M. Bone quality assessment in type 2 diabetes mellitus // J. Osteoporos. Int. 2014. Vol. 25, N 7. P. 1969-1973.

Материалы данного сайта распространяются на условиях лицензии Creative Commons Attribution 4.0 International License («Атрибуция - Всемирная»)

ГЛАВНЫЙ РЕДАКТОР
ГЛАВНЫЙ РЕДАКТОР
Александр Сергеевич Аметов
Заслуженный деятель науки РФ, доктор медицинских наук, профессор, заведующий кафедрой эндокринологии, заведующий сетевой кафедрой ЮНЕСКО по теме "Биоэтика сахарного диабета как глобальная проблема" ФГБОУ ДПО РМАНПО Минздрава России (Москва)"
Вскрытие

Журналы «ГЭОТАР-Медиа»